ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-03
    Description: The Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project is concerned with ocean color satellite sensor data intercomparison and merger for biological and interdisciplinary studies of the global oceans. Imagery from different ocean color sensors can now be processed by a single software package using the same algorithms, adjusted by different sensor spectral characteristics, and the same ancillary meteorological and environmental data. This enables cross-comparison and validation of the data derived from satellite sensors and, consequently, creates continuity in ocean color information on both the temporal and spatial scale. The next step in this process is the integration of in situ ocean and atmospheric parameters to enable cross-validation and further refinement of the ocean color methodology. The SIMBIOS Project Office accomplishments during 2000 year are summarized under satellite data processing, data product validation, SeaWiFS Bio-Optical Archive and Storage System (SeaBASS) database, supporting services, sun photometers and calibration activities, and calibration round robins. These accomplishments are described.
    Keywords: Oceanography
    Type: SIMBIOS Project; 8-25; NASA/TM-2001-209976
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: We describe our efforts in studying and comparing the ocean color data derived from the Japanese Ocean Color and Temperature Scanner (OCTS) and the French Polarization and Directionality of the Earth's Reflectances (POLDER). OCTS and POLDER were both on board Japan's Sun-synchronous Advanced Earth Observing Satellite (ADEOS-1) from August 1996 to June 1997, collecting about 10 months of global ocean color data. This provides a unique opportunity for developing methods and strategies for the merging of ocean color data from multiple ocean color sensors. In this paper, we describe our approach in developing consistent data processing algorithms for both OCTS and POLDER and using a common in situ data set to vicariously calibrate the two sensors. Therefore, the OCTS and POLDER-measured radiances are effectively bridged through common in situ measurements. With this approach in processing data from two different sensors, the only differences in the derived products from OCTS and POLDER are the differences inherited from the instrument characteristics. Results show that there are no obvious bias differences between the OCTS and POLDER-derived ocean color products, whereas the differences due to noise, which stem from variations in sensor characteristics, are difficult to correct. It is possible, however, to reduce noise differences with some data averaging schemes. The ocean color data from OCTS and POLDER can therefore be compared and merged in the sense that there is no significant bias between two.
    Keywords: Oceanography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-29
    Description: One of the primary goals of the NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project is to develop methods for meaningful comparison and possible merging of data products from multiple ocean color missions. The Modular Optoelectronic Scanner (MOS) is a German instrument that was launched in the spring of 1996 on the Indian IRS-P3 satellite. With the successful launch of NASA's Sea-viewing Wide Field-of-view Sensor (SeaWiFS) in the summer of 1997, there are now two ocean color missions in concurrent operation and there is interest within the scientific community to compare data from these two sensors. In this paper, we describe our efforts to retrieve ocean optical properties from both SeaWiFS and MOS using consistent methods. We first briefly review the atmospheric correction, which removes more than 90% of the observed radiances in the visible, and then describe how the atmospheric correction algorithm used for the SeaWiFS data can be modified for application to other ocean color sensors. Next, since the retrieved water-leaving radiances in the visible between MOS and SeaWiFS are significantly different, we developed a vicarious intercalibration method to recalibrate the MOS spectral bands based on the optical properties of the ocean and atmosphere derived from the coincident SeaWiFS measurements. We present and discuss the MOS retrieved ocean optical properties before and after the vicarious calibration, and demonstrate the efficacy of this approach. We show that it is possible and efficient to vicariously intercalibrate sensors between one and another.
    Keywords: Oceanography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-06
    Description: The Operational Land Imager (OLI) is a multispectral radiometer hosted on the recently launched Landsat8 satellite. OLI includes a suite of relatively narrow spectral bands at 30 m spatial resolution in the visible to shortwave infrared, which makes it a potential tool for ocean color radiometry: measurement of the reflected spectral radiance upwelling from beneath the ocean surface that carries information on the biogeochemical constituents of the upper ocean euphotic zone. To evaluate the potential of OLI to measure ocean color, processing support was implemented in Sea-viewing Wide Field-of-View Sensor (SeaWiFS) Data Analysis System (SeaDAS), which is an open-source software package distributed by NASA for processing, analysis, and display of ocean remote sensing measurements from a variety of spaceborne multispectral radiometers. Here we describe the implementation of OLI processing capabilities within SeaDAS, including support for various methods of atmospheric correction to remove the effects of atmospheric scattering and absorption and retrieve the spectral remote sensing reflectance (Rrs; sr1). The quality of the retrieved Rrs imagery will be assessed, as will the derived water column constituents, such as the concentration of the phytoplankton pigment chlorophyll a.
    Keywords: Oceanography
    Type: GSFC-E-DAA-TN23041 , Journal of Applied Remote Sensing (e-ISSN 1931-3195); 9; 1; 096070
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-06
    Description: A 16-year (1998-2013) analysis of trends and seasonal patterns was conducted for the 5 subtropical ocean gyres using chlorophyll-a (Chl-a) retrievals from ocean color satellite data, sea surface temperature (SST) obtained from optimally interpolated Advanced Very High Resolution Radiometer (AVHRR) data, and sea-level anomaly (SLA) from Aviso multi-sensor altimetry data. Trend analysis was also performed on mixed-layer data derived from gridded temperature and salinity profiles (1998-2010) from the Simple Ocean Data Assimilation (SODA) model. The Chl-a monthly composites were constructed from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate-resolution Imaging Spectroradiometer (MODIS) on Aqua using two different algorithms: the standard algorithm (STD) that has been in use since the start of the SeaWiFS mission in 1997, and a more recently developed Ocean Color Index (OCI) algorithm that is purported to provide improved accuracy in low chlorophyll waters such as the oligotrophic regions of the subtropical gyres. Trends were obtained for all gyres using both STD and OCI algorithms, which demonstrated generally consistent results. The North Pacific, Indian Ocean, North Atlantic and South Atlantic gyres showed significant downward trends in Chl-a, while the South Pacific gyre has a much weaker upward trend with no statistical significance. Time series of satellite-derived net primary production (NPP) showed downward trends for all the gyres, while all 5 gyres exhibited positive trends in SST and SLA. The seasonal variability of Chl-a in each gyre is tightly coupled to the variability in mixed layer depth (MLD) with peak values in winter in both hemispheres when vertical mixing is more vigorous, reaching depths approaching the nutricline (ZNO3, here defined as the depth of the 0.2 micron nitrate concentration). On a seasonal basis, Chl-a concentrations increase when the MLD approaches or is deeper than the nutricline depth, in agreement with the concept that vertical mixing is the major driving mechanism for phytoplankton photosynthesis in the interior of the gyres. In addition, MLD and SST seasonal changes are well correlated indicating that SST is a reasonable index of vertical mixing in the gyres. The combination of surface warming trends and biomass reduction over the 16-year period has the potential to reduce atmospheric CO2 uptake by the gyres and therefore influence the global carbon cycle.
    Keywords: Oceanography
    Type: GSFC-E-DAA-TN20233 , Frontiers in Marine Science (e-ISSN 2296-7745); 2; 1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: We describe the development of a new suite of aerosol models for the retrieval of atmospheric and oceanic optical properties from the SeaWiFs and MODIS sensors, including aerosol optical thickness (tau), angstrom coefficient (alpha), and water-leaving radiance (L(sub w)). The new aerosol models are derived from Aerosol Robotic Network (AERONET) observations and have bimodal lognormal distributions that are narrower than previous models used by the Ocean Biology Processing Group. We analyzed AERONET data over open ocean and coastal regions and found that the seasonal variability in the modal radii, particularly in the coastal region, was related to the relative humidity, These findings were incorporated into the models by making the modal radii, as well as the refractive indices, explicitly dependent on relative humidity, From those findings, we constructed a new suite of aerosol models. We considered eight relative humidity values (30%, 50%, 70%, 75%, 80%, 85%, 90%. and 95%) and, for each relative humidity value, we constructed ten distributions by varying the fine-mode fraction from zero to 1. In all. 80 distributions (8Rh x 10 fine-mode fractions) were created to process the satellite data. We. also assumed that the coarse-mode particles were nonabsorbing (sea salt) and that all observed absorptions were entirely due to fine-mode particles. The composition of fine mode was varied to ensure that the new models exhibited the same spectral dependence of single scattering albedo as observed in the AERONET data,
    Keywords: Optics
    Type: Applied Optics; 49; 29; 5545-5560
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The efforts to improve the data quality for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data products have continued, following the third reprocessing of the global data set in May 2000. Analyses have been ongoing to address all aspects of the processing algorithms, particularly the calibration methodologies, atmospheric correction, and data flagging and masking. All proposed changes were subjected to rigorous testing, evaluation and validation. The results of these activities culminated in the fourth reprocessing, which was completed in July 2002. The algorithm changes, which were implemented for this reprocessing, are described in the chapters of this volume. Chapter 1 presents an overview of the activities leading up to the fourth reprocessing, and summarizes the effects of the changes. Chapter 2 describes the modifications to the on-orbit calibration, specifically the focal plane temperature correction and the temporal dependence. Chapter 3 describes the changes to the vicarious calibration, including the stray light correction to the Marine Optical Buoy (MOBY) data and improved data screening procedures. Chapter 4 describes improvements to the near-infrared (NIR) band correction algorithm. Chapter 5 describes changes to the atmospheric correction and the oceanic property retrieval algorithms, including out-of-band corrections, NIR noise reduction, and handling of unusual conditions. Chapter 6 describes various changes to the flags and masks, to increase the number of valid retrievals, improve the detection of the flag conditions, and add new flags. Chapter 7 describes modifications to the level-la and level-3 algorithms, to improve the navigation accuracy, correct certain types of spacecraft time anomalies, and correct a binning logic error. Chapter 8 describes the algorithm used to generate the SeaWiFS photosynthetically available radiation (PAR) product. Chapter 9 describes a coupled ocean-atmosphere model, which is used in one of the changes described in Chapter 4. Finally, Chapter 10 describes a comparison of results from the third and fourth reprocessings along the US. Northeast coast.
    Keywords: Optics
    Type: NASA/TM-2003-206892/VOL22 , Rept-2003-01915-0/VOL22 , NAS 1.15:206892/VOL22 , (ISSN 1522-8789)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Ocean color remote sensing provides synoptic-scale, near-daily observations of marine inherent optical properties (IOPs). Whilst contemporary ocean color algorithms are known to perform well in deep oceanic waters, they have difficulty operating in optically clear, shallow marine environments where light reflected from the seafloor contributes to the water-leaving radiance. The effect of benthic reflectance in optically shallow waters is known to adversely affect algorithms developed for optically deep waters [1, 2]. Whilst adapted versions of optically deep ocean color algorithms have been applied to optically shallow regions with reasonable success [3], there is presently no approach that directly corrects for bottom reflectance using existing knowledge of bathymetry and benthic albedo.To address the issue of optically shallow waters, we have developed a semi-analytical ocean color inversion algorithm: the Shallow Water Inversion Model (SWIM). SWIM uses existing bathymetry and a derived benthic albedo map to correct for bottom reflectance using the semi-analytical model of Lee et al [4]. The algorithm was incorporated into the NASA Ocean Biology Processing Groups L2GEN program and tested in optically shallow waters of the Great Barrier Reef, Australia. In-lieu of readily available in situ matchup data, we present a comparison between SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Property Algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA).
    Keywords: Oceanography
    Type: GSFC-E-DAA-TN15162 , Ocean Color Research Team Meeting; May 05, 2014 - May 07, 2014; Silver Spring, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: This tutorial is an introduction to atmospheric correction in general and also documentation of the atmospheric correction algorithms currently implemented by the NASA Ocean Biology Processing Group (OBPG) for processing ocean color data from satellite-borne sensors such as MODIS and VIIRS. The intended audience is graduate students or others who are encountering this topic for the first time. The tutorial is in two parts. Part I discusses the generic atmospheric correction problem. The magnitude and nature of the problem are first illustrated with numerical results generated by a coupled ocean-atmosphere radiative transfer model. That code allow the various contributions (Rayleigh and aerosol path radiance, surface reflectance, water-leaving radiance, etc.) to the topof- the-atmosphere (TOA) radiance to be separated out. Particular attention is then paid to the definition, calculation, and interpretation of the so-called "exact normalized water-leaving radiance" and its equivalent reflectance. Part I ends with chapters on the calculation of direct and diffuse atmospheric transmittances, and on how vicarious calibration is performed. Part II then describes one by one the particular algorithms currently used by the OBPG to effect the various steps of the atmospheric correction process, viz. the corrections for absorption and scattering by gases and aerosols, Sun and sky reflectance by the sea surface and whitecaps, and finally corrections for sensor out-of-band response and polarization effects. One goal of the tutorial-guided by teaching needs- is to distill the results of dozens of papers published over several decades of research in atmospheric correction for ocean color remote sensing.
    Keywords: Oceanography
    Type: NASA/TM-2016-217551 , GSFC-E-DAA-TN35509
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: The NASA VIIRS Ocean Science Team (VOST) has the task of evaluating Suomi NPP VIIRS ocean color data for the continuity of the NASA ocean color climate data records. The generation of science quality ocean color data products requires an instrument calibration that is stable over time. Since the VIIRS NIR Degradation Anomaly directly impacts the bands used for atmospheric correction of the ocean color data (Bands M6 and M7), the VOST has adapted the VIIRS on-orbit calibration approach to meet the ocean science requirements. The solar diffuser calibration time series and the solar diffuser stability monitor time series have been used to derive changes in the instrument response and diffuser reflectance over time for bands M1-M11.
    Keywords: Oceanography
    Type: GSFC-E-DAA-TN6422
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...