ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimie 70 (1988), S. 1483-1491 
    ISSN: 0300-9084
    Keywords: Daucus carota ; cell wall ; glycoprotein ; β-fructosidase
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: β-fructofuranosidase ; invertase ; gene expression ; gene structure ; flower buds ; Daucus carota
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Three genomic clones (Inv *Dc1, Inv *Dc2 and Inv *Dc3) were isolated by using the cDNA for carrot cell wall β-fructofuranosidase as a probe. The expression patterns of the three genes differed markedly. High levels of Inv *Dc1 transcripts were found in leaves and roots of young carrot, whereas in plants with developing tap roots no transcripts were detected. A high level of mRNA of Inv *Dc1 was also present in suspension-cultured cells. In developing reproductive organs, only low levels of transcripts of Inv *Dc1 were found in flower buds and flowers and none at later stages of development. In contrast, Inv *Dc2 and Inv *Dc3 were not expressed in vegetative plant organs. Invb1 *Dc1 was exclusively and strongly expressed in flower buds, and Inv *Dc3 at a very low level in suspension-cultured cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Molecular breeding 4 (1998), S. 119-127 
    ISSN: 1572-9788
    Keywords: Daucus carota ; Agrobacterium tumefaciens ; genetic transformation ; β-glucuronidase ; 35S promoter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A protocol is presented for the efficient transformation of carrot (Daucus carota L. cv. Nantaise) by Agrobacterium tumefaciens. The binary vector contained the marker gene β-glucuronidase (GUS), driven by the 35S promoter of cauliflower mosaic virus, and the nptII gene, which confers kanamycin resistance. Highest T-DNA transfer rates were obtained by co-cultivating bacteria with hypocotyl segments of dark-grown seedlings on solidified B5 medium containing naphthaleneacetic acid and 6-benzylaminopurine. After 2 days, bacterial growth was stopped with antibiotics. Two weeks later, the explants were placed on agar containing the kanamycin derivate geneticin; antibiotic-resistant calli developed during the following 4 weeks. Suspension cultures were obtained from resistant calli and plants regenerated via somatic embryogenesis in liquid culture. The majority of plants were phenotypically normal and, depending on the Agrobacterium strain used, harbored single or multiple copies of the T-DNA. About equal levels of GUS activity were found in different organs of young plants up to 6 weeks after embryogenesis. In leaves of older plants, GUS activity was markedly reduced, whereas the activities in phloem and xylem parenchyma cells of developing tap roots were still high and fairly uniform. Thus, the 35S promoter may be a useful tool to drive the expression of transgenes in developing carrot storage roots.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5028
    Keywords: sucrose synthase ; Daucus carota ; sucrose partitioning ; starch accumulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Sucrose synthase, which cleaves sucrose in the presence of uridine diphosphate (UDP) into UDP-glucose and fructose, is thought to be a key determinant of sink strength of heterotrophic plant organs. To determine the roles of the enzyme in carrot, we characterized carrot sucrose synthase at the molecular level. Two genes (Susy*Dc1 and Susy*Dc2) were isolated. The deduced amino acid sequences are 87% identical. However, the sequences upstream of the translation initiation codons are markedly different, as are the expression patterns of the two genes. Susy*Dc2 was exclusively expressed in flowers. Transcripts for Susy*Dc1 were found in stems, in roots at different developmental stages, and in flower buds, flowers and maturing seeds, with the highest levels in strong utilization sinks for sucrose such as growing stems and tap root tips. Expression of Susy*Dc1 was regulated by anaerobiosis but not by sugars or acetate. The carrot sucrose synthase protein is partly membrane-associated and this insoluble form may be directly involved in cellulose biosynthesis. Tap roots of the carrot cultivar used accumulated starch in the vicinity of the vascular bundles, which correlated with high sucrose synthase transcript levels. This finding suggests that soluble sucrose synthase in tap roots channels sucrose towards starch biosynthesis. Starch accumulation appears to be transient and may be involved in sucrose partitioning to developing tap roots.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 41 (1999), S. 465-479 
    ISSN: 1573-5028
    Keywords: antisense repression ; Daucus carota ; sucrose partitioning ; sucrose synthase ; sucrose utilization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To unravel the roles of sucrose synthase in carrot, we reduced its activity in transgenic carrot plants by an antisense approach. For this purpose, the cDNA for the main form of carrot sucrose synthase was expressed in antisense orientation behind the 35S promoter of cauliflower mosaic virus. In independent antisense plant lines grown in soil, sucrose synthase activity was reduced in tap roots but not in leaves. In the sink organs, sucrose utilization was markedly decreased and higher levels of sucrose but lower levels of UDP-glucose, glucose, fructose, starch and cellulose were found. The phenotype of the antisense plants clearly differed from that of control plants. Both leaves and roots were markedly smaller, and the antisense line with the lowest sucrose synthase activity also developed the smallest plants. In most of the plant lines, the leaf-to-root dry weight ratios were not changed, suggesting that sucrose synthase in carrot is a major determinant of plant growth rather than of sucrose partitioning. In contrast to the acid invertases, which are critical for partitioning of assimilated carbon between source leaves and tap roots (Tang et al., Plant Cell 11: 177–189 (1999)), sucrose synthase appears to be the main sucrose-cleaving activity, feeding sucrose into metabolism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1990-11-30
    Description: All human gamma delta T cells coexpressing the products of the variable (V) region T cell receptor (TCR) gene segments V gamma 9 and V delta 2 recognize antigens from mycobacterial extracts and Daudi cells. Exogenous and endogenous ligands on the cell surface, homologous to the groEL heat shock family, induced reactivities that resembled superantigen responses in this major subset of human peripheral blood gamma delta T cells. Stimulation of human V gamma 9/V delta 2 T cells is not restricted by human leukocyte antigens (HLA), including nonpolymorphic beta 2-microglobulin (beta 2M)-associated class Ib molecules. These data may be important for understanding the role of gamma delta T cells in autoimmunity and in responses to microorganisms and tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fisch, P -- Malkovsky, M -- Kovats, S -- Sturm, E -- Braakman, E -- Klein, B S -- Voss, S D -- Morrissey, L W -- DeMars, R -- Welch, W J -- New York, N.Y. -- Science. 1990 Nov 30;250(4985):1269-73.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Oncology, University of Wisconsin, Madison 53792.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1978758" target="_blank"〉PubMed〈/a〉
    Keywords: Antigen-Presenting Cells/immunology ; Antigens, Bacterial/*immunology ; Antigens, Neoplasm/*immunology ; Bacterial Proteins/*immunology ; Burkitt Lymphoma/*immunology ; Chaperonin 60 ; Clone Cells/immunology ; Escherichia coli/immunology ; Gene Expression ; Heat-Shock Proteins/*immunology ; Histocompatibility Antigens Class I/immunology ; Humans ; Immunoglobulin Variable Region/genetics/immunology ; Immunoglobulin delta-Chains/genetics/immunology ; Immunoglobulin gamma-Chains/genetics/immunology ; Immunosorbent Techniques ; Mycobacterium/immunology ; Receptors, Antigen, T-Cell/genetics/immunology ; T-Lymphocytes/*immunology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-07-22
    Description: Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201514/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201514/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Northcott, Paul A -- Lee, Catherine -- Zichner, Thomas -- Stutz, Adrian M -- Erkek, Serap -- Kawauchi, Daisuke -- Shih, David J H -- Hovestadt, Volker -- Zapatka, Marc -- Sturm, Dominik -- Jones, David T W -- Kool, Marcel -- Remke, Marc -- Cavalli, Florence M G -- Zuyderduyn, Scott -- Bader, Gary D -- VandenBerg, Scott -- Esparza, Lourdes Adriana -- Ryzhova, Marina -- Wang, Wei -- Wittmann, Andrea -- Stark, Sebastian -- Sieber, Laura -- Seker-Cin, Huriye -- Linke, Linda -- Kratochwil, Fabian -- Jager, Natalie -- Buchhalter, Ivo -- Imbusch, Charles D -- Zipprich, Gideon -- Raeder, Benjamin -- Schmidt, Sabine -- Diessl, Nicolle -- Wolf, Stephan -- Wiemann, Stefan -- Brors, Benedikt -- Lawerenz, Chris -- Eils, Jurgen -- Warnatz, Hans-Jorg -- Risch, Thomas -- Yaspo, Marie-Laure -- Weber, Ursula D -- Bartholomae, Cynthia C -- von Kalle, Christof -- Turanyi, Eszter -- Hauser, Peter -- Sanden, Emma -- Darabi, Anna -- Siesjo, Peter -- Sterba, Jaroslav -- Zitterbart, Karel -- Sumerauer, David -- van Sluis, Peter -- Versteeg, Rogier -- Volckmann, Richard -- Koster, Jan -- Schuhmann, Martin U -- Ebinger, Martin -- Grimes, H Leighton -- Robinson, Giles W -- Gajjar, Amar -- Mynarek, Martin -- von Hoff, Katja -- Rutkowski, Stefan -- Pietsch, Torsten -- Scheurlen, Wolfram -- Felsberg, Jorg -- Reifenberger, Guido -- Kulozik, Andreas E -- von Deimling, Andreas -- Witt, Olaf -- Eils, Roland -- Gilbertson, Richard J -- Korshunov, Andrey -- Taylor, Michael D -- Lichter, Peter -- Korbel, Jan O -- Wechsler-Reya, Robert J -- Pfister, Stefan M -- 5P30CA030199/CA/NCI NIH HHS/ -- P01 CA096832/CA/NCI NIH HHS/ -- P30 CA030199/CA/NCI NIH HHS/ -- P41GM103504/GM/NIGMS NIH HHS/ -- R01 CA159859/CA/NCI NIH HHS/ -- England -- Nature. 2014 Jul 24;511(7510):428-34. doi: 10.1038/nature13379. Epub 2014 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany [2]. ; 1] Biomedical Sciences Graduate Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0685, USA [2] Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA [3]. ; 1] European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany [2]. ; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany. ; 1] Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany [2] European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany. ; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada. ; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada. ; Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA. ; Department of Neuropathology, NN Burdenko Neurosurgical Institute, 4th Tverskaya-Yamskaya 16, Moscow 125047, Russia. ; Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; Data Management Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, Berlin 14195, Germany. ; Division of Translational Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg 69120, Germany. ; 1] Division of Translational Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg 69120, Germany [2] Heidelberg Center for Personalised Oncology (DKFZ-HIPO), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; 1st Department of Pathology and Experimental Cancer Research, Semmelweis University SE, II.sz. Gyermekklinika, Budapest 1094, Hungary. ; 2nd Department of Pediatrics, Semmelweis University, SE, II.sz. Gyermekklinika, Budapest 1094, Hungary. ; 1] Glioma Immunotherapy Group, Division of Neurosurgery, Lund University, Paradisgatan 2, Lund 221 00, Sweden [2] Department of Clinical Sciences, Lund University, Paradisgatan 2, Lund 221 00, Sweden. ; Department of Pediatric Oncology, Masaryk University and University Hospital, Brno, Cernopolni 9 Brno 613 00, Czech Republic. ; Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, Prague 150 06, Czech Republic. ; Department of Oncogenomics, AMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105, AZ Netherlands. ; Department of Neurosurgery, Tubingen University Hospital, Hoppe-Seyler Strasse 3, Tubingen 72076, Germany. ; Division of Immunobiology, Program in Cancer Pathology of the Divisions of Experimental Hematology and Pathology, Program in Hematologic Malignancies of the Cancer and Blood Disease Insitute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 452229, USA. ; 1] Department of Developmental Neurobiology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA [2] Department of Oncology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA. ; Department of Oncology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA. ; Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany. ; Department of Neuropathology, University of Bonn, Sigmund-Freud-Str. 25, Bonn 53105, Germany. ; Cnopf'sche Kinderklinik, Nurnberg Children's Hospital, St-Johannis-Muhlgasse 19, Nurnberg 90419, Germany. ; Department of Neuropathology, Heinrich-Heine-University Dusseldorf, Moorenstrasse 5, Dusseldorf 40225, Germany. ; Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Im Neuenheimer Feld 430, Heidelberg 69120, Germany. ; Department of Neuropathology, University of Heidelberg, Im Neuenheimer Feld 220, Heidelberg 69120, Germany. ; 1] Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany [2] Heidelberg Center for Personalised Oncology (DKFZ-HIPO), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; 1] The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada [2] Division of Neurosurgery, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada. ; 1] Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany [2] Heidelberg Center for Personalised Oncology (DKFZ-HIPO), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. ; 1] European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany [2] EMBL, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Saffron Walden CB10 1SD, UK. ; 1] Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany [2] Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Im Neuenheimer Feld 430, Heidelberg 69120, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043047" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Child ; Chromosomes, Human, Pair 9/genetics ; DNA-Binding Proteins/*genetics/metabolism ; Enhancer Elements, Genetic/*genetics ; Genomic Structural Variation/*genetics ; Humans ; Medulloblastoma/classification/*genetics/pathology ; Mice ; Oncogenes/*genetics ; Proto-Oncogene Proteins/*genetics/metabolism ; Repressor Proteins/*genetics/metabolism ; Transcription Factors/*genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-01-28
    Description: Ancient genomic sequences have started to reveal the origin and the demographic impact of farmers from the Neolithic period spreading into Europe. The adoption of farming, stock breeding and sedentary societies during the Neolithic may have resulted in adaptive changes in genes associated with immunity and diet. However, the limited data available from earlier hunter-gatherers preclude an understanding of the selective processes associated with this crucial transition to agriculture in recent human evolution. Here we sequence an approximately 7,000-year-old Mesolithic skeleton discovered at the La Brana-Arintero site in Leon, Spain, to retrieve a complete pre-agricultural European human genome. Analysis of this genome in the context of other ancient samples suggests the existence of a common ancient genomic signature across western and central Eurasia from the Upper Paleolithic to the Mesolithic. The La Brana individual carries ancestral alleles in several skin pigmentation genes, suggesting that the light skin of modern Europeans was not yet ubiquitous in Mesolithic times. Moreover, we provide evidence that a significant number of derived, putatively adaptive variants associated with pathogen resistance in modern Europeans were already present in this hunter-gatherer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4269527/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4269527/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olalde, Inigo -- Allentoft, Morten E -- Sanchez-Quinto, Federico -- Santpere, Gabriel -- Chiang, Charleston W K -- DeGiorgio, Michael -- Prado-Martinez, Javier -- Rodriguez, Juan Antonio -- Rasmussen, Simon -- Quilez, Javier -- Ramirez, Oscar -- Marigorta, Urko M -- Fernandez-Callejo, Marcos -- Prada, Maria Encina -- Encinas, Julio Manuel Vidal -- Nielsen, Rasmus -- Netea, Mihai G -- Novembre, John -- Sturm, Richard A -- Sabeti, Pardis -- Marques-Bonet, Tomas -- Navarro, Arcadi -- Willerslev, Eske -- Lalueza-Fox, Carles -- F32 GM106656/GM/NIGMS NIH HHS/ -- F32GM106656/GM/NIGMS NIH HHS/ -- R01 HG007089/HG/NHGRI NIH HHS/ -- R01-HG007089/HG/NHGRI NIH HHS/ -- England -- Nature. 2014 Mar 13;507(7491):225-8. doi: 10.1038/nature12960. Epub 2014 Jan 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institut de Biologia Evolutiva, CSIC-UPF, Barcelona 08003, Spain [2]. ; 1] Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark [2]. ; Institut de Biologia Evolutiva, CSIC-UPF, Barcelona 08003, Spain. ; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095, USA. ; 1] Department of Integrative Biology, University of California, Berkeley, California 94720, USA [2] Department of Biology, Pennsylvania State University, 502 Wartik Laboratory, University Park, Pennsylvania 16802, USA. ; Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark. ; I.E.S.O. 'Los Salados', Junta de Castilla y Leon, E-49600 Benavente, Spain. ; Junta de Castilla y Leon, Servicio de Cultura de Leon, E-24071 Leon, Spain. ; Center for Theoretical Evolutionary Genomics, University of California, Berkeley, California 94720, USA. ; Department of Medicine and Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Nijmegen Medical Centre, 6500 Nijmegen, The Netherlands. ; Department of Human Genetics, University of Chicago, Illinois 60637, USA. ; Institute for Molecular Bioscience, Melanogenix Group, The University of Queensland, Brisbane, Queensland 4072, Australia. ; 1] Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA [2] Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA. ; 1] Institut de Biologia Evolutiva, CSIC-UPF, Barcelona 08003, Spain [2] Institucio Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Catalonia, Spain. ; 1] Institut de Biologia Evolutiva, CSIC-UPF, Barcelona 08003, Spain [2] Institucio Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Catalonia, Spain [3] Centre de Regulacio Genomica (CRG), Barcelona 08003, Catalonia, Spain [4] National Institute for Bioinformatics (INB), Barcelona 08003, Catalonia, Spain. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24463515" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/history ; *Alleles ; Biological Evolution ; Caves ; European Continental Ancestry Group/*genetics ; Eye Color/genetics ; *Fossils ; Genome, Human/genetics ; Genomics ; History, Ancient ; Humans ; Immunity/*genetics ; Lactose Intolerance/genetics ; Male ; Pigmentation/*genetics ; Polymorphism, Single Nucleotide/genetics ; Principal Component Analysis ; Skeleton ; Skin Pigmentation/genetics ; Spain/ethnology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-07-27
    Description: Medulloblastoma is an aggressively growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and shows tremendous biological and clinical heterogeneity. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life. Four tumour subgroups with distinct clinical, biological and genetic profiles are currently identified. WNT tumours, showing activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis. Group 3 and 4 tumours are molecularly less well characterized, and also present the greatest clinical challenges. The full repertoire of genetic events driving this distinction, however, remains unclear. Here we describe an integrative deep-sequencing analysis of 125 tumour-normal pairs, conducted as part of the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. Tetraploidy was identified as a frequent early event in Group 3 and 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA sequencing confirmed these alterations, and revealed the expression of what are, to our knowledge, the first medulloblastoma fusion genes identified. Chromatin modifiers were frequently altered across all subgroups. These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 and 4 patients.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3662966/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3662966/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, David T W -- Jager, Natalie -- Kool, Marcel -- Zichner, Thomas -- Hutter, Barbara -- Sultan, Marc -- Cho, Yoon-Jae -- Pugh, Trevor J -- Hovestadt, Volker -- Stutz, Adrian M -- Rausch, Tobias -- Warnatz, Hans-Jorg -- Ryzhova, Marina -- Bender, Sebastian -- Sturm, Dominik -- Pleier, Sabrina -- Cin, Huriye -- Pfaff, Elke -- Sieber, Laura -- Wittmann, Andrea -- Remke, Marc -- Witt, Hendrik -- Hutter, Sonja -- Tzaridis, Theophilos -- Weischenfeldt, Joachim -- Raeder, Benjamin -- Avci, Meryem -- Amstislavskiy, Vyacheslav -- Zapatka, Marc -- Weber, Ursula D -- Wang, Qi -- Lasitschka, Barbel -- Bartholomae, Cynthia C -- Schmidt, Manfred -- von Kalle, Christof -- Ast, Volker -- Lawerenz, Chris -- Eils, Jurgen -- Kabbe, Rolf -- Benes, Vladimir -- van Sluis, Peter -- Koster, Jan -- Volckmann, Richard -- Shih, David -- Betts, Matthew J -- Russell, Robert B -- Coco, Simona -- Tonini, Gian Paolo -- Schuller, Ulrich -- Hans, Volkmar -- Graf, Norbert -- Kim, Yoo-Jin -- Monoranu, Camelia -- Roggendorf, Wolfgang -- Unterberg, Andreas -- Herold-Mende, Christel -- Milde, Till -- Kulozik, Andreas E -- von Deimling, Andreas -- Witt, Olaf -- Maass, Eberhard -- Rossler, Jochen -- Ebinger, Martin -- Schuhmann, Martin U -- Fruhwald, Michael C -- Hasselblatt, Martin -- Jabado, Nada -- Rutkowski, Stefan -- von Bueren, Andre O -- Williamson, Dan -- Clifford, Steven C -- McCabe, Martin G -- Collins, V Peter -- Wolf, Stephan -- Wiemann, Stefan -- Lehrach, Hans -- Brors, Benedikt -- Scheurlen, Wolfram -- Felsberg, Jorg -- Reifenberger, Guido -- Northcott, Paul A -- Taylor, Michael D -- Meyerson, Matthew -- Pomeroy, Scott L -- Yaspo, Marie-Laure -- Korbel, Jan O -- Korshunov, Andrey -- Eils, Roland -- Pfister, Stefan M -- Lichter, Peter -- P30 HD018655/HD/NICHD NIH HHS/ -- R01 CA109467/CA/NCI NIH HHS/ -- England -- Nature. 2012 Aug 2;488(7409):100-5. doi: 10.1038/nature11284.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22832583" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/genetics ; Amino Acid Sequence ; Cell Transformation, Neoplastic ; Cerebellar Neoplasms/classification/diagnosis/*genetics/pathology ; Child ; Chromatin/metabolism ; Chromosomes, Human/genetics ; DEAD-box RNA Helicases/genetics ; DNA Helicases/genetics ; DNA-Binding Proteins/genetics ; Genome, Human/*genetics ; Genomics ; Hedgehog Proteins/metabolism ; High-Throughput Nucleotide Sequencing ; Histone Demethylases/genetics ; Humans ; Medulloblastoma/classification/diagnosis/*genetics/pathology ; Methylation ; Mutation/genetics ; Mutation Rate ; Neoplasm Proteins/genetics ; Nuclear Proteins/genetics ; Oncogene Proteins, Fusion/genetics ; Phosphoprotein Phosphatases/genetics ; Polyploidy ; Receptors, Cell Surface/genetics ; Sequence Analysis, RNA ; Signal Transduction ; T-Box Domain Proteins/genetics ; Transcription Factors/genetics ; Wnt Proteins/metabolism ; beta Catenin/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-01-31
    Description: Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases. To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX (alpha-thalassaemia/mental retardation syndrome X-linked) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres, were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schwartzentruber, Jeremy -- Korshunov, Andrey -- Liu, Xiao-Yang -- Jones, David T W -- Pfaff, Elke -- Jacob, Karine -- Sturm, Dominik -- Fontebasso, Adam M -- Quang, Dong-Anh Khuong -- Tonjes, Martje -- Hovestadt, Volker -- Albrecht, Steffen -- Kool, Marcel -- Nantel, Andre -- Konermann, Carolin -- Lindroth, Anders -- Jager, Natalie -- Rausch, Tobias -- Ryzhova, Marina -- Korbel, Jan O -- Hielscher, Thomas -- Hauser, Peter -- Garami, Miklos -- Klekner, Almos -- Bognar, Laszlo -- Ebinger, Martin -- Schuhmann, Martin U -- Scheurlen, Wolfram -- Pekrun, Arnulf -- Fruhwald, Michael C -- Roggendorf, Wolfgang -- Kramm, Christoph -- Durken, Matthias -- Atkinson, Jeffrey -- Lepage, Pierre -- Montpetit, Alexandre -- Zakrzewska, Magdalena -- Zakrzewski, Krzystof -- Liberski, Pawel P -- Dong, Zhifeng -- Siegel, Peter -- Kulozik, Andreas E -- Zapatka, Marc -- Guha, Abhijit -- Malkin, David -- Felsberg, Jorg -- Reifenberger, Guido -- von Deimling, Andreas -- Ichimura, Koichi -- Collins, V Peter -- Witt, Hendrik -- Milde, Till -- Witt, Olaf -- Zhang, Cindy -- Castelo-Branco, Pedro -- Lichter, Peter -- Faury, Damien -- Tabori, Uri -- Plass, Christoph -- Majewski, Jacek -- Pfister, Stefan M -- Jabado, Nada -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2012 Jan 29;482(7384):226-31. doi: 10.1038/nature10833.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉McGill University and Genome Quebec Innovation Centre, Montreal, Quebec H3A 1A4, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22286061" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics ; Base Sequence ; Child ; Chromatin/*genetics/metabolism ; Chromatin Assembly and Disassembly/*genetics ; DNA Helicases/genetics ; DNA Mutational Analysis ; Exome/genetics ; Gene Expression Profiling ; Glioblastoma/*genetics ; Histones/*genetics/metabolism ; Humans ; Molecular Sequence Data ; Mutation/*genetics ; Nuclear Proteins/genetics ; Telomere/genetics ; Tumor Suppressor Protein p53/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...