ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing  (6)
  • Cyanide  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Electrophoresis 18 (1997), S. 202-204 
    ISSN: 0173-0835
    Keywords: Capillary electrophoresis ; Cyanide ; Bioremediation ; Pseudomonas alcaligenes ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Bacterial-facilitated depletion of cyanide is under development for remediation of heap leach operations in the gold mining industry. Capillary electrophoresis was found to be a powerful tool for quantifying cyanide depletion. Changes in cyanide concentration in aqueous suspensions of Pseudomonas alcaligenes bacteria and cyanide at eleveated pH were easily monitored by capillary electrophoresis. The resulting data can be used to study rates of cyanide depletion by this strain of bacteria. Concentrations of these bacteria at 105 cells/mL were found to reduce cyanide from 100 ppm to less than 8 ppm in four days. In addition, other ions of interest in cyanide metabolism, such as formate, can be simultaneously analyzed. Direct UV detection of cyanide at 192 nm further simplifies the analytical method for these ions.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: A methodology for retrieving surface soil moisture and vegetation optical depth from satellite microwave radiometer data is presented. The procedure is tested with historical 6.6 GHz brightness temperature observations from the Scanning Multichannel Microwave Radiometer over several test sites in Illinois. Results using only nighttime data are presented at this time, due to the greater stability of nighttime surface temperature estimation. The methodology uses a radiative transfer model to solve for surface soil moisture and vegetation optical depth simultaneously using a non-linear iterative optimization procedure. It assumes known constant values for the scattering albedo and roughness. Surface temperature is derived by a procedure using high frequency vertically polarized brightness temperatures. The methodology does not require any field observations of soil moisture or canopy biophysical properties for calibration purposes and is totally independent of wavelength. Results compare well with field observations of soil moisture and satellite-derived vegetation index data from optical sensors.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Extensive airborne field campaigns (Australian Airborne Cal/val Experiments for SMOS - AACES) were undertaken during the 2010 summer and winter seasons of the southern hemisphere. The purpose of those campaigns was the validation of the Level 1c (brightness temperature) and Level 2 (soil moisture) products of the ESA-led Soil Moisture and Ocean Salinity (SMOS) mission. As SMOS is the first satellite to globally map L-band (1.4GHz) emissions from the Earth?s surface, and the first 2-dimensional interferometric microwave radiometer used for Earth observation, large scale and long-term validation campaigns have been conducted world-wide, of which AACES is the most extensive. AACES combined large scale medium-resolution airborne L-band and spectral observations, along with high-resolution in-situ measurements of soil moisture across a 50,000km2 area of the Murrumbidgee River catchment, located in south-eastern Australia. This paper presents a qualitative assessment of the SMOS brightness temperature and soil moisture products.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.CPR.7252.2012 , IEEE 2012 International Geoscience and Remote Sensing Symposium; Jul 23, 2012 - Jul 27, 2012; Munich; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The NASA Soil Moisture Active Passive (SMAP) mission was launched on January 31st, 2015. The spacecraft was to provide high-resolution (3 km and 9 km) global soil moisture estimates at regular intervals by combining for the first time L-band radiometer and radar observations. On July 7th, 2015, a component of the SMAP radar failed and the radar ceased operation. However, before this occurred the mission was able to collect and process ~2.5 months of the SMAP high-resolution active-passive soil moisture data (L2SMAP) that coincided with the Northern Hemisphere's vegetation green-up and crop growth season. In this study, we evaluate the SMAP high-resolution soil moisture product derived from several alternative algorithms against in situ data from core calibration and validation sites (CVS), and sparse networks. The baseline algorithm had the best comparison statistics against the CVS and sparse networks. The overall unbiased root-mean-square-difference is close to the 0.04 cu. m/cu. m the SMAP mission requirement. A 3 km spatial resolution soil moisture product was also examined. This product had an unbiased root-mean-square-difference of ~0.053 cu. m/cu. m. The SMAP L2SMAP product for ~2.5 months is now validated for use in geophysical applications and research and available to the public through the NASA Distributed Active Archive Center (DAAC) at the National Snow and Ice Data Center (NSIDC). The L2SMAP product is packaged with the geo-coordinates, acquisition times, and all requisite ancillary information. Although limited in duration, SMAP has clearly demonstrated the potential of using a combined L-band radar-radiometer for proving high spatial resolution and accurate global soil moisture.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN55878 , Remote Sensing of Environment (ISSN 0034-4257) (e-ISSN 1879-0704); 211; 204-217
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Soil Moisture and Ocean Salinity (SMOS)mission, launched in November 2009, provides global maps of soil moisture and ocean salinity by measuring the L-band (1.4 GHz) emission of the Earth's surface with a spatial resolution of 40-50 km.Uncertainty in the retrieval of soilmoisture over large heterogeneous areas such as SMOS pixels is expected, due to the non-linearity of the relationship between soil moisture and the microwave emission. The current baseline soilmoisture retrieval algorithm adopted by SMOS and implemented in the SMOS Level 2 (SMOS L2) processor partially accounts for the sub-pixel heterogeneity of the land surface, by modelling the individual contributions of different pixel fractions to the overall pixel emission. This retrieval approach is tested in this study using airborne L-band data over an area the size of a SMOS pixel characterised by a mix Eucalypt forest and moderate vegetation types (grassland and crops),with the objective of assessing its ability to correct for the soil moisture retrieval error induced by the land surface heterogeneity. A preliminary analysis using a traditional uniform pixel retrieval approach shows that the sub-pixel heterogeneity of land cover type causes significant errors in soil moisture retrieval (7.7%v/v RMSE, 2%v/v bias) in pixels characterised by a significant amount of forest (40-60%). Although the retrieval approach adopted by SMOS partially reduces this error, it is affected by errors beyond the SMOS target accuracy, presenting in particular a strong dry bias when a fraction of the pixel is occupied by forest (4.1%v/v RMSE,-3.1%v/v bias). An extension to the SMOS approach is proposed that accounts for the heterogeneity of vegetation optical depth within the SMOS pixel. The proposed approach is shown to significantly reduce the error in retrieved soil moisture (2.8%v/v RMSE, -0.3%v/v bias) in pixels characterised by a critical amount of forest (40-60%), at the limited cost of only a crude estimate of the optical depth of the forested area (better than 35% uncertainty). This study makes use of an unprecedented data set of airborne L-band observations and ground supporting data from the National Airborne Field Experiment 2005 (NAFE'05), which allowed accurate characterisation of the land surface heterogeneity over an area equivalent in size to a SMOS pixel.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.JA.00274.2012 , Remote Sensing of Environment; 115; 2; 3343-3354
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present (within 3 days from real-time) and provides 3-hourly, global, 9-km resolution estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and land surface conditions. This study presents an overview of the L4_SM algorithm, validation approach and product assessment versus in situ measurements. Core validation sites provide spatially averaged surface (root-zone) soil moisture measurements for 43 (17) reference pixels at 9-km and 36-km grid-cell scales located in 17 (7) distinct watersheds. Sparse networks provide point-scale measurements of surface (root-zone) soil moisture at 401 (297) locations. Core validation site results indicate that the L4_SM product meets its soil moisture accuracy requirement, specified as an unbiased RMSE (ubRMSE, or standard deviation of the error) of 0.04 cu m/cu m or better. The ubRMSE for L4_SM surface (root-zone) soil moisture is 0.038 cu m/cu m (0.028 cu m/cu m) at the 9-km scale and 0.034 cu m/cu m (0.024 cu m/cu m) at the 36-km scale. The L4_SM estimates improve (significantly at the 5 level for surface soil moisture) over model-only estimates, which have a 9-km surface (root-zone) ubRMSE of 0.043 cu m/cu m (0.031 cu m/cu m) and do not benefit from the assimilation of SMAP brightness temperature observations. Time series correlations exhibit similar relative performance. The sparse network results corroborate these findings over a greater variety of climate and land cover conditions.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN45148 , Journal of Hydrometeorology (ISSN 1525-755X) (e-ISSN 1525-7541); 18; 10; 2621-2645
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) satellite mission was launched on January 31, 2015. The observatory was developed to provide global mapping of high-resolution soil moisture and freeze-thaw state every two to three days using an L-band (active) radar and an L-band (passive) radiometer. After an irrecoverable hardware failure of the radar on July 7, 2015, the radiometer-only soil moisture product became the only operational Level 2 soil moisture product for SMAP. The product provides soil moisture estimates posted on a 36 kilometer Earth-fixed grid produced using brightness temperature observations from descending passes. Within months after the commissioning of the SMAP radiometer, the product was assessed to have attained preliminary (beta) science quality, and data were released to the public for evaluation in September 2015. The product is available from the NASA Distributed Active Archive Center at the National Snow and Ice Data Center. This paper provides a summary of the Level 2 Passive Soil Moisture Product (L2_SM_P) and its validation against in situ ground measurements collected from different data sources. Initial in situ comparisons conducted between March 31, 2015 and October 26, 2015, at a limited number of core validation sites (CVSs) and several hundred sparse network points, indicate that the V-pol Single Channel Algorithm (SCA-V) currently delivers the best performance among algorithms considered for L2_SM_P, based on several metrics. The accuracy of the soil moisture retrievals averaged over the CVSs was 0.038 cubic meter per cubic meter unbiased root-mean-square difference (ubRMSD), which approaches the SMAP mission requirement of 0.040 cubic meter per cubic meter.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN39612 , IEEE Transactions on Geoscience and Remote Sensing (e-ISSN 1558-0644); 54; 8; 4994-5007
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...