ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-12-08
    Description: The site on HIV-1 gp120 that binds to the CD4 receptor is vulnerable to antibodies. However, most antibodies that interact with this site cannot neutralize HIV-1. To understand the basis of this resistance, we determined co-crystal structures for two poorly neutralizing, CD4-binding site (CD4BS) antibodies, F105 and b13, in complexes with gp120. Both antibodies exhibited approach angles to gp120 similar to those of CD4 and a rare, broadly neutralizing CD4BS antibody, b12. Slight differences in recognition, however, resulted in substantial differences in F105- and b13-bound conformations relative to b12-bound gp120. Modeling and binding experiments revealed these conformations to be poorly compatible with the viral spike. This incompatibility, the consequence of slight differences in CD4BS recognition, renders HIV-1 resistant to all but the most accurately targeted antibodies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862588/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862588/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Lei -- Kwon, Young Do -- Zhou, Tongqing -- Wu, Xueling -- O'Dell, Sijy -- Cavacini, Lisa -- Hessell, Ann J -- Pancera, Marie -- Tang, Min -- Xu, Ling -- Yang, Zhi-Yong -- Zhang, Mei-Yun -- Arthos, James -- Burton, Dennis R -- Dimitrov, Dimiter S -- Nabel, Gary J -- Posner, Marshall R -- Sodroski, Joseph -- Wyatt, Richard -- Mascola, John R -- Kwong, Peter D -- Z99 AI999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2009 Nov 20;326(5956):1123-7. doi: 10.1126/science.1175868.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965434" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Neutralizing/chemistry/*immunology/metabolism ; Antigens, CD4/chemistry/*metabolism ; Binding Sites ; Binding Sites, Antibody ; Crystallography, X-Ray ; Epitopes ; HIV Antibodies/*chemistry/*immunology/metabolism ; HIV Envelope Protein gp120/*chemistry/*immunology/metabolism ; Hiv-1 ; Humans ; Hydrophobic and Hydrophilic Interactions ; *Immune Evasion ; Models, Molecular ; Molecular Sequence Data ; Peptide Fragments/chemistry/immunology/metabolism ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-07-10
    Description: During HIV-1 infection, antibodies are generated against the region of the viral gp120 envelope glycoprotein that binds CD4, the primary receptor for HIV-1. Among these antibodies, VRC01 achieves broad neutralization of diverse viral strains. We determined the crystal structure of VRC01 in complex with a human immunodeficiency virus HIV-1 gp120 core. VRC01 partially mimics CD4 interaction with gp120. A shift from the CD4-defined orientation, however, focuses VRC01 onto the vulnerable site of initial CD4 attachment, allowing it to overcome the glycan and conformational masking that diminishes the neutralization potency of most CD4-binding-site antibodies. To achieve this recognition, VRC01 contacts gp120 mainly through immunoglobulin V-gene regions substantially altered from their genomic precursors. Partial receptor mimicry and extensive affinity maturation thus facilitate neutralization of HIV-1 by natural human antibodies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981354/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981354/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Tongqing -- Georgiev, Ivelin -- Wu, Xueling -- Yang, Zhi-Yong -- Dai, Kaifan -- Finzi, Andres -- Kwon, Young Do -- Scheid, Johannes F -- Shi, Wei -- Xu, Ling -- Yang, Yongping -- Zhu, Jiang -- Nussenzweig, Michel C -- Sodroski, Joseph -- Shapiro, Lawrence -- Nabel, Gary J -- Mascola, John R -- Kwong, Peter D -- P30 AI060354/AI/NIAID NIH HHS/ -- Z99 AI999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Aug 13;329(5993):811-7. doi: 10.1126/science.1192819. Epub 2010 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20616231" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines ; Amino Acid Sequence ; Antibodies, Neutralizing/*chemistry/*immunology ; Antibody Affinity ; Antigenic Variation ; Antigens, CD4/chemistry/immunology/metabolism ; Base Sequence ; Binding Sites, Antibody ; Crystallography, X-Ray ; Epitopes/immunology ; HIV Antibodies/*chemistry/*immunology ; HIV Envelope Protein gp120/chemistry/genetics/*immunology ; HIV-1/*immunology ; Humans ; Immunoglobulin Fab Fragments/chemistry/immunology/metabolism ; Models, Molecular ; Molecular Mimicry ; Molecular Sequence Data ; Neutralization Tests ; Protein Conformation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-07-01
    Description: DNA methylation at selective cytosine residues (5-methylcytosine (5mC)) and their removal by TET-mediated DNA demethylation are critical for setting up pluripotent states in early embryonic development. TET enzymes successively convert 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), with 5fC and 5caC subject to removal by thymine DNA glycosylase (TDG) in conjunction with base excision repair. Early reports indicate that 5fC and 5caC could be stably detected on enhancers, promoters and gene bodies, with distinct effects on gene expression, but the mechanisms have remained elusive. Here we determined the X-ray crystal structure of yeast elongating RNA polymerase II (Pol II) in complex with a DNA template containing oxidized 5mCs, revealing specific hydrogen bonds between the 5-carboxyl group of 5caC and the conserved epi-DNA recognition loop in the polymerase. This causes a positional shift for incoming nucleoside 5'-triphosphate (NTP), thus compromising nucleotide addition. To test the implication of this structural insight in vivo, we determined the global effect of increased 5fC/5caC levels on transcription, finding that such DNA modifications indeed retarded Pol II elongation on gene bodies. These results demonstrate the functional impact of oxidized 5mCs on gene expression and suggest a novel role for Pol II as a specific and direct epigenetic sensor during transcription elongation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521995/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521995/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Lanfeng -- Zhou, Yu -- Xu, Liang -- Xiao, Rui -- Lu, Xingyu -- Chen, Liang -- Chong, Jenny -- Li, Hairi -- He, Chuan -- Fu, Xiang-Dong -- Wang, Dong -- GM052872/GM/NIGMS NIH HHS/ -- GM102362/GM/NIGMS NIH HHS/ -- HG004659/HG/NHGRI NIH HHS/ -- HG006827/HG/NHGRI NIH HHS/ -- R01 GM052872/GM/NIGMS NIH HHS/ -- R01 GM102362/GM/NIGMS NIH HHS/ -- R01 HG004659/HG/NHGRI NIH HHS/ -- R01 HG006827/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jul 30;523(7562):621-5. doi: 10.1038/nature14482. Epub 2015 Jun 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Department of Cellular and Molecular Medicine, School of Medicine, The University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26123024" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Cytosine/*analogs & derivatives/chemistry/metabolism ; DNA Methylation ; DNA Repair ; Epigenesis, Genetic ; Hydrogen Bonding ; Kinetics ; RNA Polymerase II/*chemistry/*metabolism ; Saccharomyces cerevisiae/*enzymology/genetics/metabolism ; Substrate Specificity ; Templates, Genetic ; Thymine DNA Glycosylase/metabolism ; *Transcription Elongation, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...