ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Core genome  (1)
  • Life and Medical Sciences  (1)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    BioEssays 16 (1994), S. 211-216 
    ISSN: 0265-9247
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Rifamycin is a clinically useful macrolide antibiotic produced by the gram positive bacterium. Amycolatopsis mediterranei. This antibiotic is primarily used against Mycobacterium tuberculosis and Mycobacterium leprae, causative agents of tuberculosis and leprosy, respectively. In these bacteria, rifamycin treatment specifically inhibits the initiation of RNA synthesis by binding to β-subunit of RNA polymerase. Apart from its activity against the bacteria, rifamycin has also been reported to inhibit reverse transcriptase (RT) of certain RNA viruses. Recently, rifamycin derivatives have been dis-covered that are effective against Mycobacterium avium, which is associated with the AIDS complex. Consequently, the importance of and demand for rifamycin has increased tremendously, the world over. In this article, recent trends in rifamycin research and accessability of recombinant DNA techniques to increase rifamycin production are reviewed.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in mSystems 2 (2017): e00020-17, doi:10.1128/mSystems.00020-17.
    Description: Species belonging to the genus Novosphingobium are found in many different habitats and have been identified as metabolically versatile. Through comparative genomic analysis, we identified habitat-specific genes and regulatory hubs that could determine habitat selection for Novosphingobium spp. Genomes from 27 Novosphingobium strains isolated from diverse habitats such as rhizosphere soil, plant surfaces, heavily contaminated soils, and marine and freshwater environments were analyzed. Genome size and coding potential were widely variable, differing significantly between habitats. Phylogenetic relationships between strains were less likely to describe functional genotype similarity than the habitat from which they were isolated. In this study, strains (19 out of 27) with a recorded habitat of isolation, and at least 3 representative strains per habitat, comprised four ecological groups—rhizosphere, contaminated soil, marine, and freshwater. Sulfur acquisition and metabolism were the only core genomic traits to differ significantly in proportion between these ecological groups; for example, alkane sulfonate (ssuABCD) assimilation was found exclusively in all of the rhizospheric isolates. When we examined osmolytic regulation in Novosphingobium spp. through ectoine biosynthesis, which was assumed to be marine habitat specific, we found that it was also present in isolates from contaminated soil, suggesting its relevance beyond the marine system. Novosphingobium strains were also found to harbor a wide variety of mono- and dioxygenases, responsible for the metabolism of several aromatic compounds, suggesting their potential to act as degraders of a variety of xenobiotic compounds. Protein-protein interaction analysis revealed β-barrel outer membrane proteins as habitat-specific hubs in each of the four habitats—freshwater (Saro_1868), marine water (PP1Y_AT17644), rhizosphere (PMI02_00367), and soil (V474_17210). These outer membrane proteins could play a key role in habitat demarcation and extend our understanding of the metabolic versatility of the Novosphingobium species.
    Description: This work was supported by grants from the Department of Biotechnology (DBT), R.K., S.H., K.P., A.B., and U.S. gratefully acknowledge the National Bureau of Agriculturally Important Microorganisms (NBAIM), Science and Engineering Research Board (SERB), N-PDF (PDF/2015/000062), (PDF/2015, 000319), University Grant Commission (UGC) for the Dr. D. S. Kothari Postdoctoral Fellowship and UGC for providing fellowships, respectively.
    Keywords: Novosphingobium ; Core genome ; Habitat-specific genes ; Pangenome ; Regulatory hubs
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...