ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February, 1980
    Description: The structure of the inertial peak in deep ocean kinetic energy spectra is studied here. Records were obtained from Polymode arrays deployed in the Western North Atlantic Ocean (40°W to 70°W, 15°N to 42°N). The results are interpreted both in terms of local sources and of turning point effects on internal waves generated at lower latitudes. In most of the data, there is a prominent inertial peak slightly above f; however, the peak height above the background continuum varies with depth and geographical environment. Three classes of environment and their corresponding spectra emerge from peak height variations: class 1 is the 1500 m level near the Mid-Atlantic Ridge, with the greatest peak height of 18 db; class 2 includes (a) the upper ocean (depth less than 2000 m), (b) the deep ocean (depth greater than 2000 m) over rough topography, and (c) the deep ocean underneath the Gulf Stream, with intermediate peak height of 11.5 db; class 3 is the deep ocean over smooth topography, with the lowest peak height of 7.5 db. Near f, the horizontal coherence scale is 0(60 km) at depths from 200 m to 600 m, and the vertical coherence scale is O(200 m) just below the main thermocline. A one turning point model is developed to describe inertial waves at mid-latitudes, based on the assumption that inertial waves are randomly generated at lower latitudes (global generation) where their frequency-wavenumber spectrum is given by the model of Garrett and Munk (1972 a, 1975). Using the globally valid wave functions obtained by Munk and Phillips (1968), various frequency spectra near f are calculated numerically. The model yields a prominent inertial peak of 7 db in the horizontal velocity spectrum but no peaks in the temperature spectrum. The model is latitudinally dependent: the frequency shift and bandwidth of the inertial peak decrease with latitude; energy level near f is minimum at about 30° and higher at low and high latitudes. The observations of class 3 can be well-described by the model; a low zonal wavenumber cutoff is required to produce the observed frequency shift of the inertial peak. The differences between the global generation model and the observations of class 1 and class 2 are interpreted as the effects of local sources. A locally forced model is developed based on the latitudinal modal decomposition of a localized source function. Asymptotic eigensolutions of the Laplace's tidal equation are therefore derived and used as a set of expansion functions. The forcing is through a vertical velocity field specified at the top or bottom boundaries of the ocean. For white noise forcing, the horizontal velocity spectrum of the response has an inertial peak which diminishes in the far-field. With the forcing located at either the surface or the bottom, several properties of the class 2 observations can be described qualitatively by a combination of the global and local models. The reflection of inertial waves from a turbulent benthic boundary layer is studied by a slab model of given depth. Frictional effects are confined to the boundary layer and modelled by a quadratic drag law. For given incident waves, reflection coefficients are found to be greater than 0.9 for the long waves which contain most of the energy. This result suggests that energy-containing inertial waves can propagate over great distance as is required by the validity of the model of global generation.
    Description: This work was supported by the National Science Foundation through grant OCE 76-80210 and its continuation OEE 78-19833.
    Keywords: Internal waves ; Ocean waves ; Turbulent boundary layer ; Harmonic functions
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ponte, R. M., Carson, M., Cirano, M., Domingues, C. M., Jevrejeva, S., Marcos, M., Mitchum, G., van de Wal, R. S. W., Woodworth, P. L., Ablain, M., Ardhuin, F., Ballu, V., Becker, M., Benveniste, J., Birol, F., Bradshaw, E., Cazenave, A., De Mey-Fremaux, P., Durand, F., Ezer, T., Fu, L., Fukumori, I., Gordon, K., Gravelle, M., Griffies, S. M., Han, W., Hibbert, A., Hughes, C. W., Idier, D., Kourafalou, V. H., Little, C. M., Matthews, A., Melet, A., Merrifield, M., Meyssignac, B., Minobe, S., Penduff, T., Picot, N., Piecuch, C., Ray, R. D., Rickards, L., Santamaria-Gomez, A., Stammer, D., Staneva, J., Testut, L., Thompson, K., Thompson, P., Vignudelli, S., Williams, J., Williams, S. D. P., Woppelmann, G., Zanna, L., & Zhang, X. Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level. Frontiers in Marine Science, 6, (2019): 437, doi:10.3389/fmars.2019.00437.
    Description: A major challenge for managing impacts and implementing effective mitigation measures and adaptation strategies for coastal zones affected by future sea level (SL) rise is our limited capacity to predict SL change at the coast on relevant spatial and temporal scales. Predicting coastal SL requires the ability to monitor and simulate a multitude of physical processes affecting SL, from local effects of wind waves and river runoff to remote influences of the large-scale ocean circulation on the coast. Here we assess our current understanding of the causes of coastal SL variability on monthly to multi-decadal timescales, including geodetic, oceanographic and atmospheric aspects of the problem, and review available observing systems informing on coastal SL. We also review the ability of existing models and data assimilation systems to estimate coastal SL variations and of atmosphere-ocean global coupled models and related regional downscaling efforts to project future SL changes. We discuss (1) observational gaps and uncertainties, and priorities for the development of an optimal and integrated coastal SL observing system, (2) strategies for advancing model capabilities in forecasting short-term processes and projecting long-term changes affecting coastal SL, and (3) possible future developments of sea level services enabling better connection of scientists and user communities and facilitating assessment and decision making for adaptation to future coastal SL change.
    Description: RP was funded by NASA grant NNH16CT00C. CD was supported by the Australian Research Council (FT130101532 and DP 160103130), the Scientific Committee on Oceanic Research (SCOR) Working Group 148, funded by national SCOR committees and a grant to SCOR from the U.S. National Science Foundation (Grant OCE-1546580), and the Intergovernmental Oceanographic Commission of UNESCO/International Oceanographic Data and Information Exchange (IOC/IODE) IQuOD Steering Group. SJ was supported by the Natural Environmental Research Council under Grant Agreement No. NE/P01517/1 and by the EPSRC NEWTON Fund Sustainable Deltas Programme, Grant Number EP/R024537/1. RvdW received funding from NWO, Grant 866.13.001. WH was supported by NASA (NNX17AI63G and NNX17AH25G). CL was supported by NASA Grant NNH16CT01C. This work is a contribution to the PIRATE project funded by CNES (to TP). PT was supported by the NOAA Research Global Ocean Monitoring and Observing Program through its sponsorship of UHSLC (NA16NMF4320058). JS was supported by EU contract 730030 (call H2020-EO-2016, “CEASELESS”). JW was supported by EU Horizon 2020 Grant 633211, Atlantos.
    Keywords: Coastal sea level ; Sea-level trends ; Coastal ocean modeling ; Coastal impacts ; Coastal adaptation ; Observational gaps ; Integrated observing system
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...