ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Climate  (1)
  • GEOTRACES]  (1)
  • acidic precipitation  (1)
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Whitmore, L., Shiller, A., Horner, T., Xiang, Y., Auro, M., Bauch, D., Dehairs, F., Lam, P., Li, J., Maldonado, M., Mears, C., Newton, R., Pasqualini, A., Planquette, H., Rember, R., & Thomas, H. Strong margin influence on the Arctic Ocean Barium Cycle revealed by pan‐Arctic synthesis. Journal of Geophysical Research: Oceans, 127(4), (2022): e2021JC017417, https://doi.org/10.1029/2021jc017417.
    Description: Early studies revealed relationships between barium (Ba), particulate organic carbon and silicate, suggesting applications for Ba as a paleoproductivity tracer and as a tracer of modern ocean circulation. But, what controls the distribution of barium (Ba) in the oceans? Here, we investigated the Arctic Ocean Ba cycle through a one-of-a-kind data set containing dissolved (dBa), particulate (pBa), and stable isotope Ba ratio (δ138Ba) data from four Arctic GEOTRACES expeditions conducted in 2015. We hypothesized that margins would be a substantial source of Ba to the Arctic Ocean water column. The dBa, pBa, and δ138Ba distributions all suggest significant modification of inflowing Pacific seawater over the shelves, and the dBa mass balance implies that ∼50% of the dBa inventory (upper 500 m of the Arctic water column) was supplied by nonconservative inputs. Calculated areal dBa fluxes are up to 10 μmol m−2 day−1 on the margin, which is comparable to fluxes described in other regions. Applying this approach to dBa data from the 1994 Arctic Ocean Survey yields similar results. The Canadian Arctic Archipelago did not appear to have a similar margin source; rather, the dBa distribution in this section is consistent with mixing of Arctic Ocean-derived waters and Baffin Bay-derived waters. Although we lack enough information to identify the specifics of the shelf sediment Ba source, we suspect that a sedimentary remineralization and terrigenous sources (e.g., submarine groundwater discharge or fluvial particles) are contributors.
    Description: This research was supported by the National Science Foundation [OCE-1434312 (AMS), OCE-1436666 (RN), OCE-1535854 (PL), OCE-1736949, OCE-2023456 (TJH), and OCE-1829563 (R. Anderson for open access support)], Natural Sciences and Engineering Research Council of Canada (NSERC)-Climate Change and Atmospheric Research (CCAR) Program (MTM), and LEFE-CYBER EXPATE (HP). HT acknowledges support by the Canadian GEOTRACES via NSERC-CCAR and the German Academic Exchange Service (DAAD): MOPGA-GRI (Make Our Planet Great Again—Research Initiative) sponsored by BMBF (Federal German Ministry of Education and Research; Grant No. 57429828).
    Keywords: GEOTRACES ; Barium isotopes ; Geochemical cycles ; Climate ; Continental shelves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2019JC015920, doi:10.1029/2019JC015920.
    Description: A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25–50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s−1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.
    Description: Funding for Arctic GEOTRACES was provided by the U.S. National Science Foundation, Swedish Research Council Formas, French Agence Nationale de la Recherche and LabexMER, Netherlands Organization for Scientific Research, and Independent Research Fund Denmark. Data from GEOTRACES cruises GN01 (HLY1502) and GN04 (PS94) have been archived at the Biological and Chemical Oceanography Data Management Office (Biological and Chemical Oceanography Data Management Office (BCO‐DMO); https://www.bco-dmo.org/deployment/638807) and PANGAEA (https://www.pangaea.de/?q=PS94&f.campaign%5B%5D=PS94) websites, respectively. The inorganic carbon data are available at the NOAA Ocean Carbon Data System (OCADS; doi:10.3334/CDIAC/OTG.CLIVAR_ARC01_33HQ20150809).
    Description: 2020-10-08
    Keywords: Arctic Ocean ; Transpolar Drift ; trace elements ; carbon ; nutrients ; GEOTRACES]
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-515X
    Keywords: acidic precipitation ; adirondack mountains ; liming ; snowmelt ; episodic acidification ; beaver pond
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract During the fall of 1989 7.7Mg/ha of calcium carbonate was applied on two tributary catchments (40 ha and 60 ha) to Woods Lake, a small (25 ha) acidic headwater lake in the western Adirondack region of New York. Stream-water chemistry in both catchment tributaries responded immediately. Acid-neutralizing capacity (ANC) increased by more than 200 μeq/L in one of the streams and more than 1000 μeq/L in the other, from pre-liming values which ranged from −25 to +40 μeq/L. The increase in ANC was primarily due to increases in dissolved Ca2+ concentrations. Most of the initial response of the streams was due to the dissolution of calcite that fell directly into the stream channels and adjacent wetlands. A small beaver impoundment and associated wetlands were probably responsible for the greater response observed in one of the streams. After the liming of subcatchmentIV (60 ha), Ca2+ concentrations increased with increasing stream discharge in the stream during fall rain events, suggesting a contribution from calcite dissolved within the soil and transported to the stream by surface runoff or shallow interflow. Concentrations of other ions not associated with the calcite (e.g. Na+) decreased during fall rain events, presumably due to mixing of solute-rich base flow with more dilute shallow interflow. The strong relation between changes in Ca2+ and changes in NO 3 − concentrations during spring snowmelt, (r2 = 0.93, slope = 0.96, on an equivalent basis) suggests that both solutes had a common source in the organic horizon of the soil. Increases in NO 3 − concentrations during snowmelt were balanced by increases in Ca2+ that was released either directly from the calcite or from exchange sites, mitigating episodic acidification of the stream. However, high ambient NO 3 − concentrations and relatively low ambient Ca2+ concentrations in the stream during the spring caused the stream to become acidic despite the CaCO3 treatment. In stream WO2 (40ha), Ca2+ concentrations were much higher than in stream WO4 because of the dissolution of calcite which fell directly into the upstream beaver pond and its associated wetlands. Calcium concentrations decreased as both NO 3 − concentrations and stream discharge increased, due to the dilution of Ca-enriched beaver pond water by shallow interflow. Despite this dilution, Ca2+ concentrations were high enough to more than balance strong acid anion (SO 4 − , NO 3 − , Cl−) concentrations, resulting in a positive ANC in this stream throughout the year. These data indicate that liming of wetlands and beaver ponds is more effective than whole catchment liming in neutralizing acidic surface waters.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...