ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mitotic recombination  (2)
  • Chromosomal loss  (1)
  • Mitotic segregation  (1)
  • 1
    ISSN: 1432-0983
    Keywords: S. cerevisiae ; Spontaneous mutation ; Mitotic segregation ; Loss of heterozygosity ; Recombination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have employed the analysis of spontaneous forward mutations that confer the ability to utilize L-α-aminoadipate as a nitrogen source (α-Aa+) to discern the events that contribute to mitotic segregation of spontaneous recessive mutations by diploid cells. α-Aa- diploid cells yield α-Aa+ mutants at a rate of 7.8±3.6×10-9. As in haploid strains, approximately 97% (30/31) of α-Aa+ mutants are spontaneous lys2-x recessive mutations. α-Aa+ mutants of diploid cells reflect mostly the fate of LYS2/lys2-x heterozygotes that arise by mutation within LYS2/LYS2 populations at a rate of 1.2±0.4×10-6. Mitotic recombination occurs in nonrandom association with forward mutation of LYS2 at a rate of 1.3±0.6×10-3. This mitotic recombination rate is tenfold higher than that of a control LYS2/lys2-1 diploid. Mitotic segregation within LYS2/lys2-x subpopulations yields primarily lys2-x/lys2-x diploids and a minority of lys2-x aneuploids. Fifteen percent of lys2-x/lys2-x diploids appear to have arisen by gene conversion of LYS2 to lys2-x; 85% of lys2-x/lys2-x diploids appear to have arisen by mitotic recombination in the CENII-LYS2 interval. lys2-1/lys2-1 mitotic segregants of a control LYS2/lys2-1 diploid consist similarly of 18% of lys2-1/lys2-1 diploids that appear to have arisen by gene conversion of LYS2 to lys2-1 and 82% of lys2-1/lys2-1 diploids that appear to have arisen by mitotic recombination in the CENII-LYS2 interval. The methods described can be used to simultaneously monitor the effects of yeast gene mutations and carcinogens on the principal parameters affecting the genomic stability of diploid mitotic cells: mutation, gene conversion, intergenic recombination, and chromosomal loss or rearrangement.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: Key words Yeast ; RPD3 (REC3) ; Mitotic recombination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Prior research identified the recessive rec3-1ts mutation in Saccharomyces cerevisiae which, in homozygous diploid cells, confers a conditional phenotype resulting in reduced levels of spontaneous mitotic recombination and loss of sporulation at the restrictive temperature of 36 °C. We found that a 3.4-kb genomic fragment that complements the rec3-1ts/rec3-1ts mutation and which maps to chromosome XIV, is identical to RPD3, a gene encoding a histone de-acetylase. Sporulation is reduced in homozygous diploid strains containing the rec3-1ts allele at 24 °C, suggesting that this allele of RPD3 encodes a gene product with a reduced function. Sporulation is abolished in diploid strains homozygous for the rpd3Δ or rec3-1ts alleles, as well as in rpd3Δ/rec3-1ts heteroallelic diploids, at the non-permissive temperature. Acid-phosphatase expression has been shown to be RPD3 dependent. We found that acid-phosphatase activity is greater in diploid strains homozygous for the temperature-sensitive rec3-1ts allele than in RPD3/RPD3 strains and increased further when mutant strains are grown at 36 °C. We also tested the rpd3Δ/rpd3Δ strains for their effects on spontaneous mitotic recombination. By assaying a variety of intra- and inter-genic recombination events distributed over three chromosomes, we found that in the majority of cases spontaneous mitotic recombination was reduced in diploid rpd3Δ/rpd3Δ cells (relative to a RPD3/RPD3 control). Finally, although 90% of mitotic recombinant events are initiated in the G1 phase of the growth cycle (i.e., before DNA synthesis) we show that RPD3 is not regulated in a cell-cycle-dependent manner. These data suggest that mitotic recombination, in addition to gene expression, is affected by changes in chromatin architecture mediated by RPD3.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0983
    Keywords: Chromosomal loss ; Mitotic nondisjunction ; Gene conversion ; Mitotic recombination ; Ultraviolet light
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have employed a hyperhaploid strain of Saccharomyces cerevisiae disomic for chromosome VII to monitor spontaneous and ultraviolet light induced restitution of haploidy (chromosomal loss and/or nondisjunction), mitotic gene conversion and mitotic intergenic recombination. The disomic chromosomal pair incorporates six heterozygous markers, including cyh2 r, distributed on both sides of the centromere. Cycloheximide resistant segregants of spontaneous origin were analyzed to calculate the spontaneous mitotic rates of restitution of haploidy, intergenic recombination and gene conversion that result in expression of the cyh2 r mutation. Restitution of haploidy was found to be the most common source of spontaneously arising cycloheximide resistant segregants. In contrast, those induced by ultraviolet light resulted most frequently from gene conversion of CYH2 s to cyh2 r. The chromosome VII hyperhaploid system provides a sensitive method to detect the aneugenic and recombinagenic effects of suspect chemical and physical agents.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...