ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Mycopathologia 119 (1992), S. 73-76 
    ISSN: 1573-0832
    Keywords: Chromoblastomycosis ; immunity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The cellular immune response of 8 patients from the Brazilian Amazon region with chromoblastomycosis was analyzed. Primary immunological responses of patients were tested by contact sensitization to 2,4-dinitro-chlorobenzene (DNCB), or rejection of first set skin allografts. 2 of 8 patients were reactive to DNCB after sensitization, and skin allograft rejection occured in an average of 14 days. Capacity of patients to mount recall immunological responses was measured by skin testing with two fungal antigens and three bacterial antigens. Delayed skin reaction to trichophytin and Candida antigens was negative in the majority of the patients. However, reactivity to mycobacterial (tuberculin), and bacterial (staphylococcal, streptococcal) antigen was high, or only slightly diminished respectively. The data suggest that patients with chromoblastomycosis have suppressed nonspecific, cell mediated immunity for some antigens (skin allografts, DNCB, fungal antigens), while reactivity to bacterial and mycobacterial antigens is not impaired.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Petroleum Science and Engineering 56 (2007): 127-135, doi:10.1016/j.petrol.2006.02.003.
    Description: To improve our understanding of the interaction of methane gas hydrate with host sediment, we studied: (1) the effects of gas hydrate and ice on acoustic velocity in different sediment types, (2) effect of different hydrate formation mechanisms on measured acoustic properties (3) dependence of shear strength on pore space contents, and (4) pore-pressure effects during undrained shear. A wide range in acoustic p-wave velocities (Vp) were measured in coarse-grained sediment for different pore space occupants. Vp ranged from less than 1 km/s for gascharged sediment to 1.77 - 1.94 km/s for water-saturated sediment, 2.91 - 4.00 km/s for sediment with varying degrees of hydrate saturation, and 3.88 - 4.33 km/s for frozen sediment. Vp measured in fine-grained sediment containing gas hydrate was substantially lower (1.97 km/s). Acoustic models based on measured Vp indicate that hydrate which formed in high gas flux environments can cement coarse-grained sediment, whereas hydrate formed from methane dissolved in the pore fluid may not. The presence of gas hydrate and other solid pore-filling material, such as ice, increased the sediment shear strength. The magnitude of that increase is related to the amount of hydrate in the pore space and cementation characteristics between the hydrate and sediment grains. We have found, that for consolidation stresses associated with the upper several hundred meters of subbottom depth, pore pressures decreased during shear in coarse-grained sediment containing gas hydrate, whereas pore pressure in fine-grained sediment typically increased during shear. The presence of free gas in pore spaces damped pore pressure response during shear and reduced the strengthening effect of gas hydrate in sands.
    Description: This work was supported by the Coastal and Marine Geology, and Energy Programs of the U.S. Geological Survey and funding was provided by the Gas Hydrate Program of the U.S. Department of Energy.
    Keywords: Acoustic modeling ; Acoustic velocity ; Cementation ; Gas hydrate ; Physical properties ; Shear strength
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Solid Earth 124(8), (2019): 7525-7537, doi: 10.1029/2019JB018186.
    Description: The proliferation of drilling expeditions focused on characterizing natural gas hydrate as a potential energy resource has spawned widespread interest in gas hydrate reservoir properties and associated porous media phenomena. Between 2017 and 2019, a Special Section of this journal compiled contributed papers elucidating interactions between gas hydrate and sediment based on laboratory, numerical modeling, and field studies. Motivated mostly by field observations in the northern Gulf of Mexico and offshore Japan, several papers focus on the mechanisms for gas hydrate formation and accumulation, particularly with vapor phase gas, not dissolved gas, as the precursor to hydrate. These studies rely on numerical modeling or laboratory experiments using sediment packs or benchtop micromodels. A second focus of the Special Section is the role of fines in inhibiting production of gas from methane hydrate, controlling the distribution of hydrate at a pore scale, and influencing the bulk behavior of seafloor sediments. Other papers fill knowledge gaps related to the physical properties of hydrate‐bearing sediments and advance new approaches in coupled thermal‐mechanical modeling of these sediments during hydrate dissociation. Finally, one study addresses the long‐standing question about the fate of methane hydrate at the molecular level when CO2 is injected into natural reservoirs under hydrate‐forming conditions.
    Description: C. R. was supported by the U.S. Geological Survey's Energy Resources Program and the Coastal/Marine Hazards and Resources Program, as well as by DOE Interagency Agreement DE‐FE0023495. C. R. thanks W. Waite and J. Jang for discussions and suggestions that improved this paper and L. Stern for a helpful review. J. Y. Lee was supported by the Ministry of Trade, Industry, and Energy (MOTIE) through the Project “Gas Hydrate Exploration and Production Study (19‐1143)” under the management of the Gas Hydrate Research and Development Organization (GHDO) of Korea and the Korea Institute of Geoscience and Mineral Resources (KIGAM). Any use of trade, firm, or product name is for descriptive purposes only and does not imply endorsement by the U.S. Government.
    Keywords: Gas hydrate ; Methane ; Reservoir properties ; Multiphase flow
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...