ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 204 (1986), S. 310-316 
    ISSN: 1617-4623
    Keywords: Gene replacement ; PGI1 deletion ; Glucose-6-P ; Glucose dependence ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The structural gene PG11 coding for phosphoglucose isomerase was replaced by the LEU2 gene in the genome of Saccharomyces cerevisiae. Plasmids carrying the LEU2 gene between genomic regions flanking the PG11 gene were constructed and used to transform a PGI1/pgi1 diploid strain. Stable transformants lacking the PGI1 allele were isolated. Southern analysis of their meiotic products showed that haploid strains with a deletion of 1.6 kb within the 2.2 kb PG11 coding region were viable. Thus, the PGI1 gene is not essential in yeasts. However, unlike pgi1 mutants with residual phosphoglucose isomerase activity, no growth was detected in the pgi1Δ haploid strains when fructose was supplied as sole carbon source. The wild-type growth rate could be restored by adding 0.1% glucose to the medium. Furthermore, pgi1 mutants with residual enzymatic activity grew very slowly on fructose-supplemented media containing up to 2% glucose. Strains carrying the deletion allele, however, failed to grow at glucose concentrations higher than 0.5%. Also the pgi1Δ strains did not grow in glucose as sole carbon source. On the other hand pgi1Δ/pgi1Δ diploid strains did not sporulate on the usual acetate medium. This defect could be alleviated by the addition of 0.05% glucose to the sporulation medium. Under these conditions the pgi1Δ mutants sporulated with an efficiency of 25% compared with the wild type. These results suggest that (a) the phosphoglucose isomerase reaction is the only step catalysing the interconversion of glucose-6-P and fructose-6-P, (b) glucose-6-P is essential in yeasts, and (c) the oxidation of glucose-6-P through the glucose-6-P dehydrogenase reaction is not sufficient to support growth in yeasts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 32 (1988), S. 240-244 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...