ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1997-01-03
    Description: Mitogen-activated protein (MAP) kinase cascades are activated in response to various extracellular stimuli, including growth factors and environmental stresses. A MAP kinase kinase kinase (MAPKKK), termed ASK1, was identified that activated two different subgroups of MAP kinase kinases (MAPKK), SEK1 (or MKK4) and MKK3/MAPKK6 (or MKK6), which in turn activated stress-activated protein kinase (SAPK, also known as JNK; c-Jun amino-terminal kinase) and p38 subgroups of MAP kinases, respectively. Overexpression of ASK1 induced apoptotic cell death, and ASK1 was activated in cells treated with tumor necrosis factor-alpha (TNF-alpha). Moreover, TNF-alpha-induced apoptosis was inhibited by a catalytically inactive form of ASK1. ASK1 may be a key element in the mechanism of stress- and cytokine-induced apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ichijo, H -- Nishida, E -- Irie, K -- ten Dijke, P -- Saitoh, M -- Moriguchi, T -- Takagi, M -- Matsumoto, K -- Miyazono, K -- Gotoh, Y -- New York, N.Y. -- Science. 1997 Jan 3;275(5296):90-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, The Cancer Institute, Tokyo, Japanese Foundation for Cancer Research, 1-37-1 Kami-Ikebukuro, Toshima-ku, Tokyo 170, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8974401" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Apoptosis ; COS Cells ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Division ; Cell Line ; Cell Survival ; Enzyme Activation ; JNK Mitogen-Activated Protein Kinases ; MAP Kinase Kinase 6 ; MAP Kinase Kinase Kinases ; *Mitogen-Activated Protein Kinase Kinases ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; Phosphorylation ; Polymerase Chain Reaction ; Protein-Serine-Threonine Kinases/chemistry/*metabolism ; Protein-Tyrosine Kinases/metabolism ; Recombinant Proteins/metabolism ; Saccharomyces cerevisiae/genetics/growth & development/metabolism ; *Signal Transduction ; Transfection ; Tumor Necrosis Factor-alpha/pharmacology ; p38 Mitogen-Activated Protein Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-10-14
    Description: An activity that severs stable microtubules is thought to be involved in microtubule reorganization during the cell cycle. Here, a 48-kilodalton microtubule-severing protein was purified from Xenopus eggs and identified as translational elongation factor 1 alpha (EF-1 alpha). Bacterially expressed human EF-1 alpha also displayed microtubule-severing activity in vitro and, when microinjected into fibroblasts, induced rapid and transient fragmentation of cytoplasmic microtubule arrays. Thus, EF-1 alpha, an essential component of the eukaryotic translational apparatus, appears to have a second role as a regulator of cytoskeletal rearrangements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shiina, N -- Gotoh, Y -- Kubomura, N -- Iwamatsu, A -- Nishida, E -- New York, N.Y. -- Science. 1994 Oct 14;266(5183):282-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Molecular Biology, Kyoto University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939665" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/pharmacology ; Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Guanosine Triphosphate/analogs & derivatives/metabolism ; Humans ; Microtubules/drug effects/*metabolism ; Molecular Sequence Data ; Molecular Weight ; Oocytes ; Peptide Elongation Factor 1 ; Peptide Elongation Factors/chemistry/isolation & purification/*physiology ; Rats ; Recombinant Proteins/pharmacology ; Ribonucleoproteins/chemistry/isolation & purification/*physiology ; Sepharose/analogs & derivatives/metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1996-05-24
    Description: Transforming growth factor-beta (TGF-beta) regulates many aspects of cellular function. A member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, TAK1, was previously identified as a mediator in the signaling pathway of TGF-beta superfamily members. The yeast two-hybrid system has now revealed two human proteins, termed TAB1 and TAB2 (for TAK1 binding protein), that interact with TAK1. TAB1 and TAK1 were co-immunoprecipitated from mammalian cells. Overproduction of TAB1 enhanced activity of the plasminogen activator inhibitor 1 gene promoter, which is regulated by TGF-beta, and increased the kinase activity of TAK1. TAB1 may function as an activator of the TAK1 MAPKKK in TGF-beta signal transduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shibuya, H -- Yamaguchi, K -- Shirakabe, K -- Tonegawa, A -- Gotoh, Y -- Ueno, N -- Irie, K -- Nishida, E -- Matsumoto, K -- New York, N.Y. -- Science. 1996 May 24;272(5265):1179-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8638164" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; Base Sequence ; Carrier Proteins/chemistry/*metabolism ; Cell Line ; Cloning, Molecular ; Enzyme Activation ; Genes, Reporter ; Humans ; *Intracellular Signaling Peptides and Proteins ; *MAP Kinase Kinase Kinases ; Mice ; Molecular Sequence Data ; Plasminogen Activator Inhibitor 1/genetics ; Promoter Regions, Genetic ; Protein-Serine-Threonine Kinases/*metabolism ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/genetics/metabolism ; *Signal Transduction ; Transfection ; Transformation, Genetic ; Transforming Growth Factor beta/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1995-12-01
    Description: The phosphorylation of the human estrogen receptor (ER) serine residue at position 118 is required for full activity of the ER activation function 1 (AF-1). This Ser118 is phosphorylated by mitogen-activated protein kinase (MAPK) in vitro and in cells treated with epidermal growth factor (EGF) and insulin-like growth factor (IGF) in vivo. Overexpression of MAPK kinase (MAPKK) or of the guanine nucleotide binding protein Ras, both of which activate MAPK, enhanced estrogen-induced and antiestrogen (tamoxifen)-induced transcriptional activity of wild-type ER, but not that of a mutant ER with an alanine in place of Ser118. Thus, the activity of the amino-terminal AF-1 of the ER is modulated by the phosphorylation of Ser118 through the Ras-MAPK cascade of the growth factor signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kato, S -- Endoh, H -- Masuhiro, Y -- Kitamoto, T -- Uchiyama, S -- Sasaki, H -- Masushige, S -- Gotoh, Y -- Nishida, E -- Kawashima, H -- Metzger, D -- Chambon, P -- New York, N.Y. -- Science. 1995 Dec 1;270(5241):1491-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Agricultural Chemistry, Tokyo University of Agriculture, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7491495" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Line ; Enzyme Activation ; Epidermal Growth Factor/pharmacology ; Estradiol/analogs & derivatives/pharmacology ; Estrogen Antagonists/pharmacology ; Humans ; Mitogen-Activated Protein Kinase Kinases ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Polyunsaturated Alkamides ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-raf ; Proto-Oncogene Proteins p21(ras)/metabolism ; Receptors, Estrogen/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Serine/*metabolism ; Somatomedins/pharmacology ; Tamoxifen/analogs & derivatives/pharmacology ; *Transcriptional Activation/drug effects ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...