ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-02-19
    Description: A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-kappaBeta pathway. We show that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826709/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826709/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beroukhim, Rameen -- Mermel, Craig H -- Porter, Dale -- Wei, Guo -- Raychaudhuri, Soumya -- Donovan, Jerry -- Barretina, Jordi -- Boehm, Jesse S -- Dobson, Jennifer -- Urashima, Mitsuyoshi -- Mc Henry, Kevin T -- Pinchback, Reid M -- Ligon, Azra H -- Cho, Yoon-Jae -- Haery, Leila -- Greulich, Heidi -- Reich, Michael -- Winckler, Wendy -- Lawrence, Michael S -- Weir, Barbara A -- Tanaka, Kumiko E -- Chiang, Derek Y -- Bass, Adam J -- Loo, Alice -- Hoffman, Carter -- Prensner, John -- Liefeld, Ted -- Gao, Qing -- Yecies, Derek -- Signoretti, Sabina -- Maher, Elizabeth -- Kaye, Frederic J -- Sasaki, Hidefumi -- Tepper, Joel E -- Fletcher, Jonathan A -- Tabernero, Josep -- Baselga, Jose -- Tsao, Ming-Sound -- Demichelis, Francesca -- Rubin, Mark A -- Janne, Pasi A -- Daly, Mark J -- Nucera, Carmelo -- Levine, Ross L -- Ebert, Benjamin L -- Gabriel, Stacey -- Rustgi, Anil K -- Antonescu, Cristina R -- Ladanyi, Marc -- Letai, Anthony -- Garraway, Levi A -- Loda, Massimo -- Beer, David G -- True, Lawrence D -- Okamoto, Aikou -- Pomeroy, Scott L -- Singer, Samuel -- Golub, Todd R -- Lander, Eric S -- Getz, Gad -- Sellers, William R -- Meyerson, Matthew -- K08 AR055688/AR/NIAMS NIH HHS/ -- K08 AR055688-03/AR/NIAMS NIH HHS/ -- K08 AR055688-04/AR/NIAMS NIH HHS/ -- K08 CA122833/CA/NCI NIH HHS/ -- K08 CA122833-01A1/CA/NCI NIH HHS/ -- K08 CA122833-02/CA/NCI NIH HHS/ -- K08 CA122833-03/CA/NCI NIH HHS/ -- K08 CA134931/CA/NCI NIH HHS/ -- K08CA122833/CA/NCI NIH HHS/ -- P01CA 098101/CA/NCI NIH HHS/ -- P01CA085859/CA/NCI NIH HHS/ -- P50CA90578/CA/NCI NIH HHS/ -- R01 CA109038/CA/NCI NIH HHS/ -- R01 GM074024/GM/NIGMS NIH HHS/ -- R01CA109038/CA/NCI NIH HHS/ -- R01CA109467/CA/NCI NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- U24 CA126546/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Feb 18;463(7283):899-905. doi: 10.1038/nature08822.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Program and Medical and Population Genetics Group, The Broad Institute of M.I.T. and Harvard, 7 Cambridge Center.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20164920" target="_blank"〉PubMed〈/a〉
    Keywords: Apoptosis/genetics ; Cell Line, Tumor ; Cell Survival/genetics ; DNA Copy Number Variations/*genetics ; Gene Amplification/genetics ; Gene Dosage/*genetics ; Genomics ; Humans ; Multigene Family/genetics ; Myeloid Cell Leukemia Sequence 1 Protein ; Neoplasms/classification/*genetics/pathology ; Proto-Oncogene Proteins c-bcl-2/genetics ; Signal Transduction ; bcl-X Protein/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-02-09
    Description: Mutations in IDH1 and IDH2, the genes coding for isocitrate dehydrogenases 1 and 2, are common in several human cancers, including leukemias, and result in overproduction of the (R)-enantiomer of 2-hydroxyglutarate [(R)-2HG]. Elucidation of the role of IDH mutations and (R)-2HG in leukemogenesis has been hampered by a lack of appropriate cell-based models. Here, we show that a canonical IDH1 mutant, IDH1 R132H, promotes cytokine independence and blocks differentiation in hematopoietic cells. These effects can be recapitulated by (R)-2HG, but not (S)-2HG, despite the fact that (S)-2HG more potently inhibits enzymes, such as the 5'-methylcytosine hydroxylase TET2, that have previously been linked to the pathogenesis of IDH mutant tumors. We provide evidence that this paradox relates to the ability of (S)-2HG, but not (R)-2HG, to inhibit the EglN prolyl hydroxylases. Additionally, we show that transformation by (R)-2HG is reversible.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836459/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836459/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Losman, Julie-Aurore -- Looper, Ryan E -- Koivunen, Peppi -- Lee, Sungwoo -- Schneider, Rebekka K -- McMahon, Christine -- Cowley, Glenn S -- Root, David E -- Ebert, Benjamin L -- Kaelin, William G Jr -- P30 DK049216/DK/NIDDK NIH HHS/ -- R01 CA068490/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Mar 29;339(6127):1621-5. doi: 10.1126/science.1231677. Epub 2013 Feb 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23393090" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Cell Transformation, Neoplastic/genetics/*metabolism ; Glutarates/*metabolism ; *Hematopoiesis ; Humans ; Isocitrate Dehydrogenase/genetics/*metabolism ; Leukemia/*enzymology/genetics ; Models, Biological ; Procollagen-Proline Dioxygenase/*antagonists & inhibitors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-12-03
    Description: Lenalidomide is a drug with clinical efficacy in multiple myeloma and other B cell neoplasms, but its mechanism of action is unknown. Using quantitative proteomics, we found that lenalidomide causes selective ubiquitination and degradation of two lymphoid transcription factors, IKZF1 and IKZF3, by the CRBN-CRL4 ubiquitin ligase. IKZF1 and IKZF3 are essential transcription factors in multiple myeloma. A single amino acid substitution of IKZF3 conferred resistance to lenalidomide-induced degradation and rescued lenalidomide-induced inhibition of cell growth. Similarly, we found that lenalidomide-induced interleukin-2 production in T cells is due to depletion of IKZF1 and IKZF3. These findings reveal a previously unknown mechanism of action for a therapeutic agent: alteration of the activity of an E3 ubiquitin ligase, leading to selective degradation of specific targets.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077049/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077049/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kronke, Jan -- Udeshi, Namrata D -- Narla, Anupama -- Grauman, Peter -- Hurst, Slater N -- McConkey, Marie -- Svinkina, Tanya -- Heckl, Dirk -- Comer, Eamon -- Li, Xiaoyu -- Ciarlo, Christie -- Hartman, Emily -- Munshi, Nikhil -- Schenone, Monica -- Schreiber, Stuart L -- Carr, Steven A -- Ebert, Benjamin L -- P01 CA078378/CA/NCI NIH HHS/ -- P01 CA108631/CA/NCI NIH HHS/ -- P01 CA155258/CA/NCI NIH HHS/ -- P50 CA100707/CA/NCI NIH HHS/ -- R01 HL082945/HL/NHLBI NIH HHS/ -- R01HL082945/HL/NHLBI NIH HHS/ -- RL1- HG004671/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2014 Jan 17;343(6168):301-5. doi: 10.1126/science.1244851. Epub 2013 Nov 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Brigham and Women's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24292625" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents/*pharmacology ; Cell Line, Tumor ; HEK293 Cells ; Humans ; Ikaros Transcription Factor/genetics/*metabolism ; Interleukin-2/biosynthesis ; Multiple Myeloma/*metabolism ; Proteolysis ; T-Lymphocytes/drug effects/metabolism ; Thalidomide/*analogs & derivatives/pharmacology ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-07-24
    Description: The identification of somatic activating mutations in JAK2 (refs 1-4) and in the thrombopoietin receptor gene (MPL) in most patients with myeloproliferative neoplasm (MPN) led to the clinical development of JAK2 kinase inhibitors. JAK2 inhibitor therapy improves MPN-associated splenomegaly and systemic symptoms but does not significantly decrease or eliminate the MPN clone in most patients with MPN. We therefore sought to characterize mechanisms by which MPN cells persist despite chronic inhibition of JAK2. Here we show that JAK2 inhibitor persistence is associated with reactivation of JAK-STAT signalling and with heterodimerization between activated JAK2 and JAK1 or TYK2, consistent with activation of JAK2 in trans by other JAK kinases. Further, this phenomenon is reversible: JAK2 inhibitor withdrawal is associated with resensitization to JAK2 kinase inhibitors and with reversible changes in JAK2 expression. We saw increased JAK2 heterodimerization and sustained JAK2 activation in cell lines, in murine models and in patients treated with JAK2 inhibitors. RNA interference and pharmacological studies show that JAK2-inhibitor-persistent cells remain dependent on JAK2 protein expression. Consequently, therapies that result in JAK2 degradation retain efficacy in persistent cells and may provide additional benefit to patients with JAK2-dependent malignancies treated with JAK2 inhibitors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991463/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991463/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koppikar, Priya -- Bhagwat, Neha -- Kilpivaara, Outi -- Manshouri, Taghi -- Adli, Mazhar -- Hricik, Todd -- Liu, Fan -- Saunders, Lindsay M -- Mullally, Ann -- Abdel-Wahab, Omar -- Leung, Laura -- Weinstein, Abby -- Marubayashi, Sachie -- Goel, Aviva -- Gonen, Mithat -- Estrov, Zeev -- Ebert, Benjamin L -- Chiosis, Gabriela -- Nimer, Stephen D -- Bernstein, Bradley E -- Verstovsek, Srdan -- Levine, Ross L -- 1R01CA151949-01/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- R01 CA151949/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Sep 6;489(7414):155-9. doi: 10.1038/nature11303.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22820254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Disease Models, Animal ; Drug Resistance, Neoplasm/drug effects ; Enzyme Activation/drug effects ; Gene Knockdown Techniques ; Granulocytes/drug effects/enzymology/metabolism ; HSP90 Heat-Shock Proteins/antagonists & inhibitors/metabolism ; Humans ; Janus Kinase 1/biosynthesis/deficiency/genetics/metabolism ; Janus Kinase 2/*antagonists & inhibitors/deficiency/genetics/*metabolism ; Mice ; Myeloproliferative Disorders/*drug therapy/enzymology/metabolism/pathology ; Phosphorylation ; Protein Biosynthesis ; *Protein Multimerization ; RNA Interference ; STAT Transcription Factors/*metabolism ; *Signal Transduction/drug effects ; TYK2 Kinase/biosynthesis/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-07-02
    Description: Lenalidomide is a highly effective treatment for myelodysplastic syndrome (MDS) with deletion of chromosome 5q (del(5q)). Here, we demonstrate that lenalidomide induces the ubiquitination of casein kinase 1A1 (CK1alpha) by the E3 ubiquitin ligase CUL4-RBX1-DDB1-CRBN (known as CRL4(CRBN)), resulting in CK1alpha degradation. CK1alpha is encoded by a gene within the common deleted region for del(5q) MDS and haploinsufficient expression sensitizes cells to lenalidomide therapy, providing a mechanistic basis for the therapeutic window of lenalidomide in del(5q) MDS. We found that mouse cells are resistant to lenalidomide but that changing a single amino acid in mouse Crbn to the corresponding human residue enables lenalidomide-dependent degradation of CK1alpha. We further demonstrate that minor side chain modifications in thalidomide and a novel analogue, CC-122, can modulate the spectrum of substrates targeted by CRL4(CRBN). These findings have implications for the clinical activity of lenalidomide and related compounds, and demonstrate the therapeutic potential of novel modulators of E3 ubiquitin ligases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kronke, Jan -- Fink, Emma C -- Hollenbach, Paul W -- MacBeth, Kyle J -- Hurst, Slater N -- Udeshi, Namrata D -- Chamberlain, Philip P -- Mani, D R -- Man, Hon Wah -- Gandhi, Anita K -- Svinkina, Tanya -- Schneider, Rebekka K -- McConkey, Marie -- Jaras, Marcus -- Griffiths, Elizabeth -- Wetzler, Meir -- Bullinger, Lars -- Cathers, Brian E -- Carr, Steven A -- Chopra, Rajesh -- Ebert, Benjamin L -- P01 CA066996/CA/NCI NIH HHS/ -- P01CA108631/CA/NCI NIH HHS/ -- R01 HL082945/HL/NHLBI NIH HHS/ -- R01HL082945/HL/NHLBI NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- T32GM007753/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jul 9;523(7559):183-8. doi: 10.1038/nature14610. Epub 2015 Jul 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Brigham and Women's Hospital, Division of Hematology, Boston, Massachusetts 02115, USA [2] University Hospital of Ulm, Department of Internal Medicine III, 89081 Ulm, Germany [3] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; 1] Brigham and Women's Hospital, Division of Hematology, Boston, Massachusetts 02115, USA [2] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; Celgene Corporation, San Diego, California 92121, USA. ; Brigham and Women's Hospital, Division of Hematology, Boston, Massachusetts 02115, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; Roswell Park Cancer Institute, Buffalo, New York 14263, USA. ; University Hospital of Ulm, Department of Internal Medicine III, 89081 Ulm, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26131937" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Casein Kinase I/genetics/*metabolism ; Cell Line ; Gene Expression Regulation/drug effects ; HEK293 Cells ; Humans ; Immunologic Factors/pharmacology ; Jurkat Cells ; K562 Cells ; Mice ; Molecular Sequence Data ; Myelodysplastic Syndromes/*genetics/*physiopathology ; Peptide Hydrolases/chemistry ; Proteolysis/drug effects ; Sequence Alignment ; Sequence Deletion ; Species Specificity ; Thalidomide/*analogs & derivatives/pharmacology ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitination/*drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...