ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-07-09
    Description: Although it is known that the methylation of DNA in 5' promoters suppresses gene expression, the role of DNA methylation in gene bodies is unclear. In mammals, tissue- and cell type-specific methylation is present in a small percentage of 5' CpG island (CGI) promoters, whereas a far greater proportion occurs across gene bodies, coinciding with highly conserved sequences. Tissue-specific intragenic methylation might reduce, or, paradoxically, enhance transcription elongation efficiency. Capped analysis of gene expression (CAGE) experiments also indicate that transcription commonly initiates within and between genes. To investigate the role of intragenic methylation, we generated a map of DNA methylation from the human brain encompassing 24.7 million of the 28 million CpG sites. From the dense, high-resolution coverage of CpG islands, the majority of methylated CpG islands were shown to be in intragenic and intergenic regions, whereas less than 3% of CpG islands in 5' promoters were methylated. The CpG islands in all three locations overlapped with RNA markers of transcription initiation, and unmethylated CpG islands also overlapped significantly with trimethylation of H3K4, a histone modification enriched at promoters. The general and CpG-island-specific patterns of methylation are conserved in mouse tissues. An in-depth investigation of the human SHANK3 locus and its mouse homologue demonstrated that this tissue-specific DNA methylation regulates intragenic promoter activity in vitro and in vivo. These methylation-regulated, alternative transcripts are expressed in a tissue- and cell type-specific manner, and are expressed differentially within a single cell type from distinct brain regions. These results support a major role for intragenic methylation in regulating cell context-specific alternative promoters in gene bodies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998662/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998662/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maunakea, Alika K -- Nagarajan, Raman P -- Bilenky, Mikhail -- Ballinger, Tracy J -- D'Souza, Cletus -- Fouse, Shaun D -- Johnson, Brett E -- Hong, Chibo -- Nielsen, Cydney -- Zhao, Yongjun -- Turecki, Gustavo -- Delaney, Allen -- Varhol, Richard -- Thiessen, Nina -- Shchors, Ksenya -- Heine, Vivi M -- Rowitch, David H -- Xing, Xiaoyun -- Fiore, Chris -- Schillebeeckx, Maximiliaan -- Jones, Steven J M -- Haussler, David -- Marra, Marco A -- Hirst, Martin -- Wang, Ting -- Costello, Joseph F -- U01 ES017154/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jul 8;466(7303):253-7. doi: 10.1038/nature09165.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20613842" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/anatomy & histology/cytology/*metabolism ; Carrier Proteins/genetics ; Cell Line ; Conserved Sequence/*genetics ; CpG Islands/genetics ; *DNA Methylation ; DNA, Intergenic/genetics/metabolism ; Frontal Lobe/metabolism ; Gene Expression Regulation ; Histones/genetics/metabolism ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Middle Aged ; Nerve Tissue Proteins ; Organ Specificity ; Promoter Regions, Genetic/*genetics ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-04
    Description: Most human breast cancers have diversified genomically and biologically by the time they become clinically evident. Early events involved in their genesis and the cellular context in which these events occur have thus been difficult to characterize. Here we present the first formal evidence of the shared and independent ability of basal cells and luminal progenitors, isolated from normal human mammary tissue and transduced with a single oncogene (KRAS(G12D)), to produce serially transplantable, polyclonal, invasive ductal carcinomas within 8 weeks of being introduced either subrenally or subcutaneously into immunodeficient mice. DNA barcoding of the initial cells revealed a dramatic change in the numbers and sizes of clones generated from them within 2 weeks, and the first appearance of many 'new' clones in tumours passaged into secondary recipients. Both primary and secondary tumours were phenotypically heterogeneous and primary tumours were categorized transcriptionally as 'normal-like'. This system challenges previous concepts that carcinogenesis in normal human epithelia is necessarily a slow process requiring the acquisition of multiple driver mutations. It also presents the first description of initial events that accompany the genesis and evolution of malignant human mammary cell populations, thereby contributing new understanding of the rapidity with which heterogeneity in their properties can develop.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nguyen, Long V -- Pellacani, Davide -- Lefort, Sylvain -- Kannan, Nagarajan -- Osako, Tomo -- Makarem, Maisam -- Cox, Claire L -- Kennedy, William -- Beer, Philip -- Carles, Annaick -- Moksa, Michelle -- Bilenky, Misha -- Balani, Sneha -- Babovic, Sonja -- Sun, Ivan -- Rosin, Miriam -- Aparicio, Samuel -- Hirst, Martin -- Eaves, Connie J -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2015 Dec 10;528(7581):267-71. doi: 10.1038/nature15742. Epub 2015 Dec 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. ; Department of Medical Genetics, University of British Columbia, Vancouver, British ColumbiaV6T 2B5, Canada. ; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada. ; Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. ; Centre for High-Throughput Biology, Department of Microbiology &Immunology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada. ; Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. ; Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada. ; Cancer Control Unit, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26633636" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/genetics/*physiopathology ; Carcinoma, Ductal, Breast/genetics/*physiopathology ; Cell Lineage/genetics ; *Cell Transformation, Neoplastic ; Cells, Cultured ; DNA Barcoding, Taxonomic ; Female ; Gene Expression Profiling ; Heterografts ; Humans ; Lentivirus/genetics ; Mammary Glands, Human/cytology/*physiopathology ; Mice ; Mice, Inbred Strains ; Mice, SCID ; Proto-Oncogene Proteins/genetics ; Time Factors ; Transduction, Genetic ; ras Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...