ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Carbonate transport  (1)
  • Geosciences (General)  (1)
  • 1
    ISSN: 1432-2048
    Keywords: Carbonate transport ; Carboxysome ; Inorganic carbon compensation point ; Photorespiration ; Ribulose-1,5-bisphosphate carboxylase/oxygenase ; Synechocystis PCC 6803 (mutant)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A mutant of the cyanobacterium Synechocystis PCC 6803 was obtained by replacing the gene of the carboxylation enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) with that of the photosynthetic bacterium Rhodospirillum rubrum. This mutant consequently lacks carboxysomes — the protein complexes in which the original enzyme is packed. It is incapable of growing at atmospheric CO2 levels and has an apparent photosynthetic affinity for inorganic carbon (Ci) which is 1000 times lower than that of the wild type, yet it accumulates more Ci than the wild type. The mutant appears to be defective in its ability to utilize the intracellular Ci pool for photosynthesis. Unlike the carboxysomal carboxylase activity of Rubisco, which is almost insensitive to inhibition by O2 in vitro, the soluble enzyme is competitively inhibited by O2. The photosynthetic rate and Ci compensation point of the wild type were hardly affected by low O2 levels. Above 100 μM O2, however, both parameters became inhibited. The CO2 compensation point of the mutant was linearly dependent on O2 concentration. The higher sensitivity of the mutant to O2 inhibition than that expected from in-vitro kinetics parameters of Rubisco, indicates a low capacity to recycle photorespiratory metabolites to Calvin-cycle intermediates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Large-scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar-induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant photosynthetic activity (i.e. electron transport rate). Here, we provide a framework to link SIF retrievals and crop yield, accounting for stoichiometry, photosynthetic pathways, and respiration losses. We apply this framework to estimate United States crop productivity for 2007-2012, where we use the spaceborne SIF retrievals from the Global Ozone Monitoring Experiment-2 satellite, benchmarked with county-level crop yield statistics, and compare it with various traditional crop monitoring approaches. We find that a SIF-based approach accounting for photosynthetic pathways (i.e. C3 and C4 crops) provides the best measure of crop productivity among these approaches, despite the fact that SIF sensors are not yet optimized for terrestrial applications. We further show that SIF provides the ability to infer the impacts of environmental stresses on autotrophic respiration and carbon-use-efficiency, with a substantial sensitivity of both to high temperatures. These results indicate new opportunities for improved mechanistic understanding of crop yield responses to climate variability and change.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN41459 , Global Change Biology (ISSN 1354-1013) (e-ISSN 1365-2486); 22; 2; 716-726
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...