ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Eucalyptus grandis  (2)
  • Canopy models  (1)
  • Enteric fermentation  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 88 (1991), S. 504-510 
    ISSN: 1432-1939
    Keywords: Eucalyptus grandis ; Canopy ; N and P distributions ; Photosynthesis-nitrogen response
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Eucalyptus grandis trees were grown in plantations with and without added fertiliser to examine the effects of plant nutrition on photosynthesis and growth. Leaves were sampled from known locations within canopies of selected trees and leaf N and P concentrations were measured. Contour maps of N and P distributions were then produced for crowns of trees aged between 6 and 16 months. Gas exchange measurements on sample leaves were used to estimate parameters of a model of C3 photosynthesis as a function of leaf N and P contentrations. Linear relationships were obtained between model parameters and leaf N concentration, but P appeared to be present in excess, since no correlation was found with P contentration. Photosynthetic light response curves were calculated for model leaves with differing N concentrations. The curves show that optimal concentrations of N in leaves depend on mean levels of irradiance during growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Eucalyptus grandis ; Photosynthesis modelling ; Canopy light climate ; Nitrogen use efficiency ; Light use efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A simulation model for radiation absorption and photosynthesis was used to test the hypothesis that observed nonuniform distributions of nitrogen concentrations in young Eucalyptus grandis trees result in greater amounts of daily assimilation than in hypothetical trees with uniform N distributions. Simulations were performed for trees aged 6, 9, 12 and 16 months which had been grown in plantations under a factorial combination of two levels of fertilization and irrigation. Observed leaf N distribution patterns yielded daily assimilation rates which were only marginally greater (〈5%) than for hypothetical trees with uniform distributions. Patterns of assimilation distribution in individual tree crowns closely resembled those for absorbed radiation, rather than for N. These conclusions were unaffected by three choices of alternative leaf area density distributions. The simulation model was also used to calculate hourly and daily rates of canopy assimilation to investigate the relative importance of radiation absorption and total canopy nitrogen on assimilation. Simulated hourly rates of carbon assimilation were often lightsaturated, whereas daily carbon gain was directly proportional to radiation absorbed by the tree crown and to total mass of N in the leaves. Leaf nitrogen concentrations determined photosynthetic capacity, whereas total leaf area determined the amount of radiation absorbed and thus the degree to which capacity was realized. Observed total leaf area and total crown N were closely correlated. The model predicted that nitrogen use efficiences (NUE, mol CO2 mol−1 N) were 60% higher for unfertilized than for fertilized trees at low levels of absorbed photosynthetically active radiation (PAR). Nitrogen use efficiency was dependent on fertilizer treatment and on the amount of absorbed PAR; NUE declined with increasing absorbed PAR, but decreased more rapidly for unfertilized than for fertilized trees. Annual primary productivity was linearly related to both radiation absorbed and to mass of N in the canopy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-1472
    Keywords: Source/sink distributions ; Lagrangian dispersion ; Canopy models ; Canopy distributions ; Atmospheric stability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Source/sink distributions of heat, water vapour andCO2 within a rice canopy were inferred using aninverse Lagrangian dispersion analysis and measuredmean profiles of temperature, specific humidity andCO2 mixing ratio. Monin–Obukhov similarity theorywas used to account for the effects of atmosphericstability on σw(z), the standard deviation ofvertical velocity and τL(z), the Lagrangian timescale of the turbulence. Classical surface layer scaling was applied in the inertial sublayer (z 〉 zruf)using the similarity parameter ζ = (z - d)/L, where z is height above ground, d is the zero plane displacementheight for momentum, L is the Obukhov length,and zruf ≈ 2.3hc, where hc iscanopy height. A single length scale hc, was usedfor the stability parameter 3 = hc/L in the height range 0.25 〈 z/hc 〈 2.5. This choice is justified by mixing layer theory, which shows that within the roughness sublayer there is one dominant turbulence length scaledetermined by the degree of inflection in the windprofile at the canopy top. In the absence of theoretical or experimental evidence for guidance,standard Monin–Obukhov similarity functions, withζ = hc/L, were used to calculate the stabilitydependence of σw(z) and τL(z) in the roughness sublayer. For z/hc 〈 0.25 the turbulence length and time scales are influenced by the presence of the lowersurface, and stability effects are minimal. With theseassumptions there was excellent agreement between eddycovariance flux measurements and deductions from theinverse Lagrangian analysis. Stability correctionswere particularly necessary for night time fluxes whenthe atmosphere was stably stratified. The inverse Lagrangian analysis provides a useful toolfor testing and refining multilayer canopy models usedto predict radiation absorption, energy partitioningand CO2 exchanges within the canopy and at thesoil surface. Comparison of model predictions withsource strengths deduced from the inverse analysisgave good results. Observed discrepancies may be dueto incorrect specification of the turbulent timescales and vertical velocity fluctuations close to theground. Further investigation of turbulencecharacteristics within plant canopies is required toresolve these issues.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-1472
    Keywords: Mass balance ; Flux-gradient ; Boundary-layer budgeting ; Enteric fermentation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The paper examines the strengths and weaknesses of a rangeof meteorological flux measurement techniques that mightbe used to verify predictions of greenhouse gas inventories.Recent research into emissions of methane (CH4)produced by enteric fermentation in grazing cattle and sheepis used to illustrate various methodologies. Quantifying thisimportant source presents special difficulties because the animalsconstitute moving, heterogeneously distributed, intermittent, pointsources. There are two general approaches: one, from the bottom up,involves direct measurements of emissions from a known number ofanimals, and the other, from the top down, infers areal emissions ofCH4 from its atmospheric signature. A mass-balance methodproved successful for bottom-up verification. It permits undisturbedgrazing, has a simple theoretical basis and is appropriate for fluxmeasurements on small plots and where there are scattered pointsources. The top-down methodologies include conventional flux-gradientapproaches and convective and nocturnal boundary-layer (CBL and NBL)budgeting schemes. Particular attention is given to CBL budget methods inboth differential and integral form. All top-down methodologies require ideal weather conditions for their application, and they suffer from the scattered nature of the source, varying wind directions and low instrument resolution. As for mass-balance, flux-gradient micrometeorological measurements were in good agreement with inventory predictions of CH4 production by livestock, but the standard errors associated with both methods were too large to permit detection of changes of a few per cent in emission rate, which might be important for inventory, regulatory or research purposes. Fluxes calculated by CBL and NBL methods were of the same order of magnitude as inventory predictions, but more improvement is needed before their use can be endorsed. Opportunities for improving the precision of both bottom-up and top-down methodologies are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...