ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Camouflage  (2)
  • Sepia apama  (2)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Royal Society, 2005. This article is posted here by permission of Royal Society for personal use, not for redistribution. The definitive version was published in Proceedings of the Royal Society of London B 272 (2005): 1047-1051, doi:10.1098/rspb.2004.3031.
    Description: In species where females store sperm from their mates prior to fertilization, sperm competition is particularly probable. Female Sepia apama are polyandrous and have access to sperm from packages (spermatangia) deposited by males onto their buccal area during mating and to sperm stored in internal sperm-storage organs (receptacles) located below the beak. Here, we describe the structure of the sperm stores in the female's buccal area, use microsatellite DNA analyses to determine the genetic diversity of stored sperm and combine these data with offspring genotypes to determine the storage location of paternal sperm. The number of male genotypes represented in the sperm receptacles was significantly lower than that found among the spermatangia. Estimation of the volumes of sperm contained in the receptacles and the spermatangia were statistically comparable; however, paternal sperm were more likely to have come from spermatangia than from the sperm receptacles. These results confirm a genetic polyandrous mating system in this species and suggest that fertilization pattern with respect to the sperm stores used is not random.
    Description: Funding was provided by ARC grants to J.N.H., a Royal Holloway RSF grant to P.W.S., an FCAR doctoral scholarship to M.-J.N. and the Sholley Foundation to R.T.H.
    Keywords: Sperm storage ; Sperm genetic diversity ; Mating system ; Sperm competition ; Sepia apama
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 1004738 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © University of Chicago, 2011. This article is posted here by permission of University of Chicago for personal use, not for redistribution. The definitive version was published in American Naturalist 177 (2011): 681-690, doi:10.1086/659626.
    Description: It might seem obvious that a camouflaged animal must generally match its background whereas to be conspicuous an organism must differ from the background. However, the image parameters (or statistics) that evaluate the conspicuousness of patterns and textures are seldom well defined, and animal coloration patterns are rarely compared quantitatively with their respective backgrounds. Here we examine this issue in the Australian giant cuttlefish Sepia apama. We confine our analysis to the best-known and simplest image statistic, the correlation in intensity between neighboring pixels. Sepia apama can rapidly change their body patterns from assumed conspicuous signaling to assumed camouflage, thus providing an excellent and unique opportunity to investigate how such patterns differ in a single visual habitat. We describe the intensity variance and spatial frequency power spectra of these differing body patterns and compare these patterns with the backgrounds against which they are viewed. The measured image statistics of camouflaged animals closely resemble their backgrounds, while signaling animals differ significantly from their backgrounds. Our findings may provide the basis for a set of general rules for crypsis and signals. Furthermore, our methods may be widely applicable to the quantitative study of animal coloration.
    Description: S.Z. was supported by a Case award from the Biotechnology and Biological Sciences Research Council and QinetiQ and is currently supported by Office of Naval Research (ONR) grant N00014-09-1-1053. R.T.H. received partial support from ONR grant N0001406-1- 0202.
    Keywords: Camouflage ; Communication ; Signaling ; Image structure ; Cephalopods ; Vision
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © University of Chicago Press, 2007. This article is posted here by permission of University of Chicago Press for personal use, not for redistribution. The definitive version was published in American Naturalist 169 (2007): 543–551, doi:10.1086/512106.
    Description: Cephalopods are well known for their diverse, quick‐changing camouflage in a wide range of shallow habitats worldwide. However, there is no documentation that cephalopods use their diverse camouflage repertoire at night. We used a remotely operated vehicle equipped with a video camera and a red light to conduct 16 transects on the communal spawning grounds of the giant Australian cuttlefish Sepia apama situated on a temperate rock reef in southern Australia. Cuttlefish ceased sexual signaling and reproductive behavior at dusk and then settled to the bottom and quickly adapted their body patterns to produce camouflage that was tailored to different backgrounds. During the day, only 3% of cuttlefish were camouflaged on the spawning ground, but at night 86% (71 of 83 cuttlefish) were camouflaged in variations of three body pattern types: uniform (n=5), mottled (n=33), or disruptive (n=34) coloration. The implication is that nocturnal visual predators provide the selective pressure for rapid, changeable camouflage patterning tuned to different visual backgrounds at night.
    Description: This work was made possible by grant 7456-03 from the National Geographic Society Committee on Research and Exploration and support from the Sholley Foundation.
    Keywords: Crypsis ; Concealment ; Disruptive coloration ; Coincident disruptive coloration ; Cephalopod ; Sepia apama
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-27
    Description: The data collected for this report are photo data taken of Sepia officinalis in the laboratory during their exposures to either a smooth or a textured rock. The photos stand to serve as evidence as the cuttlefishes' camouflage choice of masquerade with changeable skin pattern and texture.
    Description: Masquerade is a defence tactic in which a prey resembles an inedible or inanimate object thus causing predators to misclassify it. Most masquerade colour patterns are static although some species adopt postures or behaviours to enhance the effect. Dynamic masquerade in which the colour pattern can be changed is rare. Here we report a 2-step sensory process that enables an additional novel capability known only in cuttlefish and octopus: morphing 3D physical skin texture changes that further enhance the optical illusions created by the coloured skin patterns. Our experimental design incorporated sequential sensory processes: addition of a 3-dimensional rock to the testing arena, which attracted the cuttlefish to settle next to it; then visual processing by the cuttlefish of physical textures on the rock to guide expression of the skin papillae, which can range from fully relaxed (smooth skin) to fully expressed (bumpy skin). When uniformly white smooth rocks were presented, cuttlefish moved to the rock and deployed a uniform body pattern with mostly smooth skin. When a rock with small-scale fragments of contrasting shells was presented, the cuttlefish deployed mottled body patterns with strong expression of papillae. These robust and reversible responses indicate a sophisticated visual sensorimotor system for dynamic masquerade.
    Description: Sholley Foundation AFOSR grant # FA9550-14-1-0134
    Keywords: Camouflage ; Defence ; Visual perception ; Papillae ; Predation ; predator-prey
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...