ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-10-28
    Description: Large-conductance calcium- and voltage-activated potassium channels (BKCa) are dually activated by membrane depolarization and elevation of cytosolic calcium ions (Ca2+). Under normal cellular conditions, BKCa channel activation requires Ca2+ concentrations that typically occur in close proximity to Ca2+ sources. We show that BKCa channels affinity-purified from rat brain are assembled into macromolecular complexes with the voltage-gated calcium channels Cav1.2 (L-type), Cav2.1 (P/Q-type), and Cav2.2 (N-type). Heterologously expressed BKCa-Cav complexes reconstitute a functional "Ca2+ nanodomain" where Ca2+ influx through the Cav channel activates BKCa in the physiological voltage range with submillisecond kinetics. Complex formation with distinct Cav channels enables BKCa-mediated membrane hyperpolarization that controls neuronal firing pattern and release of hormones and transmitters in the central nervous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berkefeld, Henrike -- Sailer, Claudia A -- Bildl, Wolfgang -- Rohde, Volker -- Thumfart, Jorg-Oliver -- Eble, Silke -- Klugbauer, Norbert -- Reisinger, Ellen -- Bischofberger, Josef -- Oliver, Dominik -- Knaus, Hans-Gunther -- Schulte, Uwe -- Fakler, Bernd -- New York, N.Y. -- Science. 2006 Oct 27;314(5799):615-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Physiology, University of Freiburg, Hermann-Herder-Strasse 7, 79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17068255" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain Chemistry ; CHO Cells ; Calcium/*metabolism ; Calcium Channels, L-Type/drug effects/isolation & purification/*metabolism ; Calcium Channels, N-Type/drug effects/isolation & purification/*metabolism ; Calcium Signaling ; Chromaffin Cells/drug effects/metabolism ; Cricetinae ; Cricetulus ; Egtazic Acid/analogs & derivatives/pharmacology ; Large-Conductance Calcium-Activated Potassium Channels/drug effects/isolation & ; purification/*metabolism ; Membrane Potentials/drug effects ; Molecular Sequence Data ; Patch-Clamp Techniques ; Potassium/*metabolism ; Rats ; *Signal Transduction ; Transfection ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-11
    Description: In multiple sclerosis, brain-reactive T cells invade the central nervous system (CNS) and induce a self-destructive inflammatory process. T-cell infiltrates are not only found within the parenchyma and the meninges, but also in the cerebrospinal fluid (CSF) that bathes the entire CNS tissue. How the T cells reach the CSF, their functionality, and whether they traffic between the CSF and other CNS compartments remains hypothetical. Here we show that effector T cells enter the CSF from the leptomeninges during Lewis rat experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. While moving through the three-dimensional leptomeningeal network of collagen fibres in a random Brownian walk, T cells were flushed from the surface by the flow of the CSF. The detached cells displayed significantly lower activation levels compared to T cells from the leptomeninges and CNS parenchyma. However, they did not represent a specialized non-pathogenic cellular sub-fraction, as their gene expression profile strongly resembled that of tissue-derived T cells and they fully retained their encephalitogenic potential. T-cell detachment from the leptomeninges was counteracted by integrins VLA-4 and LFA-1 binding to their respective ligands produced by resident macrophages. Chemokine signalling via CCR5/CXCR3 and antigenic stimulation of T cells in contact with the leptomeningeal macrophages enforced their adhesiveness. T cells floating in the CSF were able to reattach to the leptomeninges through steps reminiscent of vascular adhesion in CNS blood vessels, and invade the parenchyma. The molecular/cellular conditions for T-cell reattachment were the same as the requirements for detachment from the leptomeningeal milieu. Our data indicate that the leptomeninges represent a checkpoint at which activated T cells are licensed to enter the CNS parenchyma and non-activated T cells are preferentially released into the CSF, from where they can reach areas of antigen availability and tissue damage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schlager, Christian -- Korner, Henrike -- Krueger, Martin -- Vidoli, Stefano -- Haberl, Michael -- Mielke, Dorothee -- Brylla, Elke -- Issekutz, Thomas -- Cabanas, Carlos -- Nelson, Peter J -- Ziemssen, Tjalf -- Rohde, Veit -- Bechmann, Ingo -- Lodygin, Dmitri -- Odoardi, Francesca -- Flugel, Alexander -- England -- Nature. 2016 Feb 18;530(7590):349-53. doi: 10.1038/nature16939. Epub 2016 Feb 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neuroimmunology, Institute for Multiple Sclerosis Research, University Medical Centre Gottingen, 37073 Gottingen, Germany. ; Institute of Anatomy, University of Leipzig, 04103 Leipzig, Germany. ; Department of Structural and Geotechnical Engineering, University of Rome La Sapienza, 00185 Rome, Italy. ; Department Neurosurgery, University Medical Centre Gottingen, 37075 Gottingen, Germany. ; Division of Immunology, Department of Pediatrics Dalhousie University, Halifax B3H 4R2, Canada. ; Departamento de Biologia Celular e Inmunologia, Centro de Biologia Molecular Severo Ochoa, 28049 Madrid, Spain. ; Medical Clinic and Policlinic IV, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany. ; Department of Neurology, University Hospital, 01307 Dresden, Germany. ; Max-Planck-Institute for Experimental Medicine, 37075 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26863192" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Animals ; Cell Adhesion ; *Cell Movement ; Cerebrospinal Fluid/*cytology/immunology ; Chemokines/metabolism ; Choroid Plexus ; Collagen/metabolism ; Disease Models, Animal ; Encephalomyelitis, Autoimmune, Experimental/immunology/*pathology ; Female ; Integrin alpha4beta1/metabolism ; Lymphocyte Activation ; Lymphocyte Function-Associated Antigen-1/metabolism ; Macrophages/immunology/metabolism ; Male ; Meninges/immunology/*pathology ; Multiple Sclerosis/immunology/*pathology ; Rats ; Rats, Inbred Lew ; Receptors, CCR5/metabolism ; Receptors, CXCR3/metabolism ; T-Lymphocytes/immunology/*pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...