ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Bottom slope  (1)
  • Coupled models  (1)
  • South China Sea  (1)
Sammlung
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 2743–2756, doi:10.1175/2010JPO4339.1.
    Beschreibung: Analysis of modern and historical observations demonstrates that the temperature of the intermediate-depth (150–900 m) Atlantic water (AW) of the Arctic Ocean has increased in recent decades. The AW warming has been uneven in time; a local 1°C maximum was observed in the mid-1990s, followed by an intervening minimum and an additional warming that culminated in 2007 with temperatures higher than in the 1990s by 0.24°C. Relative to climatology from all data prior to 1999, the most extreme 2007 temperature anomalies of up to 1°C and higher were observed in the Eurasian and Makarov Basins. The AW warming was associated with a substantial (up to 75–90 m) shoaling of the upper AW boundary in the central Arctic Ocean and weakening of the Eurasian Basin upper-ocean stratification. Taken together, these observations suggest that the changes in the Eurasian Basin facilitated greater upward transfer of AW heat to the ocean surface layer. Available limited observations and results from a 1D ocean column model support this surmised upward spread of AW heat through the Eurasian Basin halocline. Experiments with a 3D coupled ice–ocean model in turn suggest a loss of 28–35 cm of ice thickness after 50 yr in response to the 0.5 W m−2 increase in AW ocean heat flux suggested by the 1D model. This amount of thinning is comparable to the 29 cm of ice thickness loss due to local atmospheric thermodynamic forcing estimated from observations of fast-ice thickness decline. The implication is that AW warming helped precondition the polar ice cap for the extreme ice loss observed in recent years.
    Beschreibung: This study was supported by JAMSTEC (IP and VI), NOAA (IP, VI, and ID), NSF (IP,VA,VI, ID, JT, andMS),NASA(IP andVI), BMBF (ID), and UK NERC (SB) grants.
    Schlagwort(e): Arctic ; Forcing ; Temperature ; Sea ice ; Heating ; Coupled models
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Continental Shelf Research 37 (2012): 1-7, doi:10.1016/j.csr.2012.01.010.
    Beschreibung: Shoaling of large-amplitude (~100 m) nonlinear internal waves over a steep slope (~3°) in water depths between 100 m and 285 m near Dongsha Atoll in the northern South China Sea is examined with an intensive array of thermistor moorings and a bottom mounted Acoustic Doppler Current Profiler. During the 44 h study period in May 5–7, 2008, there were four groups of large internal waves with semidiurnal modulation. In each wave group a rapid transition occurred during the shoaling, such that the front face of the leading depression wave elongated and plunged to the bottom and the rear face steepened and transformed into a bottom-trapped elevation wave. The transitions occur in water depths of 200 m and deeper, and represent the largest documented internal wave shoaling events. The observations repeatedly capture the detailed temperature and velocity structures of the incident plunging waves. Strong horizontal convergence and intense upward motion are found at the leading edge of transformed elevation waves, suggesting flow separation near the bottom. The observations are compared with the previous observations and model studies. The implication of the shoaling internal waves on coral reef ecology also is discussed.
    Beschreibung: Support for LS and HS came from the US Office of Naval Research
    Schlagwort(e): Internal waves ; Shoaling ; Bottom slope ; South China Sea ; Continental shelf
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...