ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-03-12
    Description: Domestic animals are excellent models for genetic studies of phenotypic evolution. They have evolved genetic adaptations to a new environment, the farm, and have been subjected to strong human-driven selection leading to remarkable phenotypic changes in morphology, physiology and behaviour. Identifying the genetic changes underlying these developments provides new insight into general mechanisms by which genetic variation shapes phenotypic diversity. Here we describe the use of massively parallel sequencing to identify selective sweeps of favourable alleles and candidate mutations that have had a prominent role in the domestication of chickens (Gallus gallus domesticus) and their subsequent specialization into broiler (meat-producing) and layer (egg-producing) chickens. We have generated 44.5-fold coverage of the chicken genome using pools of genomic DNA representing eight different populations of domestic chickens as well as red jungle fowl (Gallus gallus), the major wild ancestor. We report more than 7,000,000 single nucleotide polymorphisms, almost 1,300 deletions and a number of putative selective sweeps. One of the most striking selective sweeps found in all domestic chickens occurred at the locus for thyroid stimulating hormone receptor (TSHR), which has a pivotal role in metabolic regulation and photoperiod control of reproduction in vertebrates. Several of the selective sweeps detected in broilers overlapped genes associated with growth, appetite and metabolic regulation. We found little evidence that selection for loss-of-function mutations had a prominent role in chicken domestication, but we detected two deletions in coding sequences that we suggest are functionally important. This study has direct application to animal breeding and enhances the importance of the domestic chicken as a model organism for biomedical research.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rubin, Carl-Johan -- Zody, Michael C -- Eriksson, Jonas -- Meadows, Jennifer R S -- Sherwood, Ellen -- Webster, Matthew T -- Jiang, Lin -- Ingman, Max -- Sharpe, Ted -- Ka, Sojeong -- Hallbook, Finn -- Besnier, Francois -- Carlborg, Orjan -- Bed'hom, Bertrand -- Tixier-Boichard, Michele -- Jensen, Per -- Siegel, Paul -- Lindblad-Toh, Kerstin -- Andersson, Leif -- England -- Nature. 2010 Mar 25;464(7288):587-91. doi: 10.1038/nature08832. Epub 2010 Mar 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-75123 Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20220755" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biological Evolution ; Chickens/*genetics ; Female ; Genetic Loci/*genetics ; Genome/*genetics ; Male ; Molecular Sequence Data ; Polymorphism, Single Nucleotide ; Selection, Genetic/*genetics ; Sequence Alignment ; Sequence Analysis, DNA ; Sequence Deletion
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-23
    Description: Ecological character displacement is a process of morphological divergence that reduces competition for limited resources. We used genomic analysis to investigate the genetic basis of a documented character displacement event in Darwin's finches on Daphne Major in the Galapagos Islands: The medium ground finch diverged from its competitor, the large ground finch, during a severe drought. We discovered a genomic region containing the HMGA2 gene that varies systematically among Darwin's finch species with different beak sizes. Two haplotypes that diverged early in the radiation were involved in the character displacement event: Genotypes associated with large beak size were at a strong selective disadvantage in medium ground finches (selection coefficient s = 0.59). Thus, a major locus has apparently facilitated a rapid ecological diversification in the adaptive radiation of Darwin's finches.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lamichhaney, Sangeet -- Han, Fan -- Berglund, Jonas -- Wang, Chao -- Almen, Markus Sallman -- Webster, Matthew T -- Grant, B Rosemary -- Grant, Peter R -- Andersson, Leif -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):470-4. doi: 10.1126/science.aad8786.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. ; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA. ; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden. Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA. leif.andersson@imbim.uu.se.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27102486" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Beak/*anatomy & histology ; Body Size/genetics ; *Droughts ; Ecuador ; Female ; Finches/*anatomy & histology/classification/*genetics ; Genomics ; Genotype ; HMGA2 Protein/genetics ; Haplotypes ; Organ Size/genetics ; Phylogeny ; *Quantitative Trait Loci ; *Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-02-18
    Description: Darwin's finches, inhabiting the Galapagos archipelago and Cocos Island, constitute an iconic model for studies of speciation and adaptive evolution. Here we report the results of whole-genome re-sequencing of 120 individuals representing all of the Darwin's finch species and two close relatives. Phylogenetic analysis reveals important discrepancies with the phenotype-based taxonomy. We find extensive evidence for interspecific gene flow throughout the radiation. Hybridization has given rise to species of mixed ancestry. A 240 kilobase haplotype encompassing the ALX1 gene that encodes a transcription factor affecting craniofacial development is strongly associated with beak shape diversity across Darwin's finch species as well as within the medium ground finch (Geospiza fortis), a species that has undergone rapid evolution of beak shape in response to environmental changes. The ALX1 haplotype has contributed to diversification of beak shapes among the Darwin's finches and, thereby, to an expanded utilization of food resources.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lamichhaney, Sangeet -- Berglund, Jonas -- Almen, Markus Sallman -- Maqbool, Khurram -- Grabherr, Manfred -- Martinez-Barrio, Alvaro -- Promerova, Marta -- Rubin, Carl-Johan -- Wang, Chao -- Zamani, Neda -- Grant, B Rosemary -- Grant, Peter R -- Webster, Matthew T -- Andersson, Leif -- England -- Nature. 2015 Feb 19;518(7539):371-5. doi: 10.1038/nature14181. Epub 2015 Feb 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden. ; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden. ; 1] Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden [2] Department of Plant Physiology, Umea University, SE-901 87 Umea, Sweden. ; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA. ; 1] Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden [2] Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden [3] Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25686609" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avian Proteins/genetics/metabolism ; Beak/*anatomy & histology ; Ecuador ; *Evolution, Molecular ; Female ; Finches/*anatomy & histology/classification/embryology/*genetics ; Gene Flow ; Genome/genetics ; Haplotypes/genetics ; Hybridization, Genetic ; Indian Ocean Islands ; Male ; Molecular Sequence Data ; Phylogeny ; Transcription Factors/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...