ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-08
    Description: Author(s): B. Li, X. H. Luo, H. Wang, W. J. Ren, S. Yano, C.-W. Wang, J. S. Gardner, K.-D. Liss, P. Miao, S.-H. Lee, T. Kamiyama, R. Q. Wu, Y. Kawakita, and Z. D. Zhang Competition between ferromagnetic and antiferromagnetic phases on frustrated lattices in hexagonal Laves phase compound Hf 0.86 Ta 0.14 Fe 2 is investigated by using neutron diffraction as a function of temperature and magnetic fields and density-functional-theory calculations. At 325 K, the compound ord… [Phys. Rev. B 93, 224405] Published Mon Jun 06, 2016
    Keywords: Magnetism
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-05-16
    Description: The discovery of TATA-binding protein-related factors (TRFs) has suggested alternative mechanisms for gene-specific transcriptional regulation and raised interest in their biological functions. In contrast to recent observations of an embryonic lethal phenotype for TRF2 inactivation in Caenorhabditis elegans and Xenopus laevis, we found that Trf2-deficient mice are viable. However, Trf2-/- mice are sterile because of a severe defect in spermiogenesis. Postmeiotic round spermatids advance at most to step 7 of differentiation but fail to progress to the elongated form, and gene-specific transcription deficiencies were identified. We speculate that mammals may have evolved more specialized TRF2 functions in the testis that involve transcriptional regulation of genes essential for spermiogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, D -- Penttila, T L -- Morris, P L -- Teichmann, M -- Roeder, R G -- New York, N.Y. -- Science. 2001 May 11;292(5519):1153-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11352070" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Differentiation ; Cell Size ; DNA-Binding Proteins/*deficiency/genetics/*physiology ; Female ; *Gene Deletion ; Gene Expression Regulation, Developmental ; Gene Targeting ; Genotype ; Infertility, Male/genetics/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Organ Size ; RNA, Messenger/genetics/metabolism ; Spermatogenesis/*genetics ; Spermatozoa/metabolism/pathology ; Telomeric Repeat Binding Protein 2 ; Testis/abnormalities/metabolism/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-07-31
    Description: Mutations in the presenilin genes are the main cause of familial Alzheimer's disease. Loss of presenilin activity and/or accumulation of amyloid-beta peptides have been proposed to mediate the pathogenesis of Alzheimer's disease by impairing synaptic function. However, the precise site and nature of the synaptic dysfunction remain unknown. Here we use a genetic approach to inactivate presenilins conditionally in either presynaptic (CA3) or postsynaptic (CA1) neurons of the hippocampal Schaeffer-collateral pathway. We show that long-term potentiation induced by theta-burst stimulation is decreased after presynaptic but not postsynaptic deletion of presenilins. Moreover, we found that presynaptic but not postsynaptic inactivation of presenilins alters short-term plasticity and synaptic facilitation. The probability of evoked glutamate release, measured with the open-channel NMDA (N-methyl-D-aspartate) receptor antagonist MK-801, is reduced by presynaptic inactivation of presenilins. Notably, depletion of endoplasmic reticulum Ca(2+) stores by thapsigargin, or blockade of Ca(2+) release from these stores by ryanodine receptor inhibitors, mimics and occludes the effects of presynaptic presenilin inactivation. Collectively, these results indicate a selective role for presenilins in the activity-dependent regulation of neurotransmitter release and long-term potentiation induction by modulation of intracellular Ca(2+) release in presynaptic terminals, and further suggest that presynaptic dysfunction might be an early pathogenic event leading to dementia and neurodegeneration in Alzheimer's disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2744588/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2744588/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Chen -- Wu, Bei -- Beglopoulos, Vassilios -- Wines-Samuelson, Mary -- Zhang, Dawei -- Dragatsis, Ioannis -- Sudhof, Thomas C -- Shen, Jie -- R01 NS041783/NS/NINDS NIH HHS/ -- R01 NS041783-04/NS/NINDS NIH HHS/ -- R01 NS041783-08/NS/NINDS NIH HHS/ -- R01NS041783/NS/NINDS NIH HHS/ -- England -- Nature. 2009 Jul 30;460(7255):632-6. doi: 10.1038/nature08177.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neurologic Diseases, Brigham & Women's Hospital, Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19641596" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Cells, Cultured ; *Gene Expression Regulation ; Glutamic Acid/metabolism ; Hippocampus/cytology/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic ; Neurons/*metabolism ; Neurotransmitter Agents/*metabolism ; Presenilins/*genetics/*metabolism ; Presynaptic Terminals/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-04-30
    Description: Mammalian Toll-like receptors (TLRs) play an important role in the innate recognition of pathogens by dendritic cells (DCs). Although TLRs are clearly involved in the detection of bacteria and viruses, relatively little is known about their function in the innate response to eukaryotic microorganisms. Here we identify a profilin-like molecule from the protozoan parasite Toxoplasma gondii that generates a potent interleukin-12 (IL-12) response in murine DCs that is dependent on myeloid differentiation factor 88. T. gondii profilin activates DCs through TLR11 and is the first chemically defined ligand for this TLR. Moreover, TLR11 is required in vivo for parasite-induced IL-12 production and optimal resistance to infection, thereby establishing a role for the receptor in host recognition of protozoan pathogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yarovinsky, Felix -- Zhang, Dekai -- Andersen, John F -- Bannenberg, Gerard L -- Serhan, Charles N -- Hayden, Matthew S -- Hieny, Sara -- Sutterwala, Fayyaz S -- Flavell, Richard A -- Ghosh, Sankar -- Sher, Alan -- 1R01AI045806-01A1/AI/NIAID NIH HHS/ -- AI05093/AI/NIAID NIH HHS/ -- R01-AI59440/AI/NIAID NIH HHS/ -- R01-GM38765/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2005 Jun 10;308(5728):1626-9. Epub 2005 Apr 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunobiology Section, Laboratory of Parasitic Diseases; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. fyarovinsky@niaid.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15860593" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Antigens, Differentiation/genetics/metabolism ; Contractile Proteins/chemistry/*immunology/isolation & purification/metabolism ; Dendritic Cells/*immunology ; Genes, Protozoan ; Immunity, Innate ; Interleukin-12/biosynthesis/blood ; Ligands ; Membrane Glycoproteins/metabolism ; Mice ; Mice, Inbred C57BL ; Microfilament Proteins/chemistry/*immunology/isolation & purification/metabolism ; Molecular Sequence Data ; Myeloid Differentiation Factor 88 ; NF-kappa B/metabolism ; Profilins ; Protozoan Proteins/chemistry/*immunology/isolation & purification/metabolism ; Receptors, Cell Surface/*metabolism ; Receptors, Immunologic/genetics/metabolism ; Recombinant Proteins/immunology ; Signal Transduction ; Toll-Like Receptors ; Toxoplasma/genetics/*immunology ; Toxoplasmosis, Animal/*immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-10-11
    Description: Cell cycle quiescence is a critical feature contributing to haematopoietic stem cell (HSC) maintenance. Although various candidate stromal cells have been identified as potential HSC niches, the spatial localization of quiescent HSCs in the bone marrow remains unclear. Here, using a novel approach that combines whole-mount confocal immunofluorescence imaging techniques and computational modelling to analyse significant three-dimensional associations in the mouse bone marrow among vascular structures, stromal cells and HSCs, we show that quiescent HSCs associate specifically with small arterioles that are preferentially found in endosteal bone marrow. These arterioles are ensheathed exclusively by rare NG2 (also known as CSPG4)(+) pericytes, distinct from sinusoid-associated leptin receptor (LEPR)(+) cells. Pharmacological or genetic activation of the HSC cell cycle alters the distribution of HSCs from NG2(+) periarteriolar niches to LEPR(+) perisinusoidal niches. Conditional depletion of NG2(+) cells induces HSC cycling and reduces functional long-term repopulating HSCs in the bone marrow. These results thus indicate that arteriolar niches are indispensable for maintaining HSC quiescence.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821873/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821873/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kunisaki, Yuya -- Bruns, Ingmar -- Scheiermann, Christoph -- Ahmed, Jalal -- Pinho, Sandra -- Zhang, Dachuan -- Mizoguchi, Toshihide -- Wei, Qiaozhi -- Lucas, Daniel -- Ito, Keisuke -- Mar, Jessica C -- Bergman, Aviv -- Frenette, Paul S -- HL069438/HL/NHLBI NIH HHS/ -- HL097700/HL/NHLBI NIH HHS/ -- R00 CA139009/CA/NCI NIH HHS/ -- R01 DK056638/DK/NIDDK NIH HHS/ -- R01 DK098263/DK/NIDDK NIH HHS/ -- R01 DK100689/DK/NIDDK NIH HHS/ -- R01 HL069438/HL/NHLBI NIH HHS/ -- R01 HL097700/HL/NHLBI NIH HHS/ -- R01 HL116340/HL/NHLBI NIH HHS/ -- T32 063754/PHS HHS/ -- England -- Nature. 2013 Oct 31;502(7473):637-43. doi: 10.1038/nature12612. Epub 2013 Oct 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York 10461, USA [2] Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24107994" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arterioles/*cytology ; Bone Marrow/blood supply ; Cell Division ; Cell Separation ; Female ; Flow Cytometry ; Hematopoietic Stem Cells/*cytology/metabolism ; Male ; Mesenchymal Stromal Cells/cytology ; Mice ; Mice, Inbred C57BL ; Nestin/metabolism ; *Stem Cell Niche
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-12-24
    Description: Drosophila melanogaster is one of the most well studied genetic model organisms; nonetheless, its genome still contains unannotated coding and non-coding genes, transcripts, exons and RNA editing sites. Full discovery and annotation are pre-requisites for understanding how the regulation of transcription, splicing and RNA editing directs the development of this complex organism. Here we used RNA-Seq, tiling microarrays and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events, and inferred protein isoforms that previously eluded discovery using established experimental, prediction and conservation-based approaches. These data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3075879/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3075879/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Graveley, Brenton R -- Brooks, Angela N -- Carlson, Joseph W -- Duff, Michael O -- Landolin, Jane M -- Yang, Li -- Artieri, Carlo G -- van Baren, Marijke J -- Boley, Nathan -- Booth, Benjamin W -- Brown, James B -- Cherbas, Lucy -- Davis, Carrie A -- Dobin, Alex -- Li, Renhua -- Lin, Wei -- Malone, John H -- Mattiuzzo, Nicolas R -- Miller, David -- Sturgill, David -- Tuch, Brian B -- Zaleski, Chris -- Zhang, Dayu -- Blanchette, Marco -- Dudoit, Sandrine -- Eads, Brian -- Green, Richard E -- Hammonds, Ann -- Jiang, Lichun -- Kapranov, Phil -- Langton, Laura -- Perrimon, Norbert -- Sandler, Jeremy E -- Wan, Kenneth H -- Willingham, Aarron -- Zhang, Yu -- Zou, Yi -- Andrews, Justen -- Bickel, Peter J -- Brenner, Steven E -- Brent, Michael R -- Cherbas, Peter -- Gingeras, Thomas R -- Hoskins, Roger A -- Kaufman, Thomas C -- Oliver, Brian -- Celniker, Susan E -- U01 HB004271/HB/NHLBI NIH HHS/ -- U01 HG004271/HG/NHGRI NIH HHS/ -- U01 HG004271-01/HG/NHGRI NIH HHS/ -- ZIA DK015600-14/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Mar 24;471(7339):473-9. doi: 10.1038/nature09715. Epub 2010 Dec 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030-6403, USA. graveley@neuron.uchc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21179090" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing/genetics ; Animals ; Base Sequence ; Drosophila Proteins/genetics ; Drosophila melanogaster/embryology/*genetics/*growth & development ; Exons/genetics ; Female ; *Gene Expression Profiling ; Gene Expression Regulation, Developmental/*genetics ; Genes, Insect/genetics ; Genome, Insect/genetics ; Male ; MicroRNAs/genetics ; Oligonucleotide Array Sequence Analysis ; Protein Isoforms/genetics ; RNA Editing/genetics ; RNA, Messenger/analysis/genetics ; RNA, Small Untranslated/analysis/genetics ; Sequence Analysis ; Sex Characteristics ; Transcription, Genetic/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-08-11
    Description: Characterization of interspecies differences in gene regulation is crucial for understanding the molecular basis of both phenotypic diversity and evolution. By means of chromatin immunoprecipitation and DNA microarray analysis, the divergence in the binding sites of the pseudohyphal regulators Ste12 and Tec1 was determined in the yeasts Saccharomyces cerevisiae, S. mikatae, and S. bayanus under pseudohyphal conditions. We have shown that most of these sites have diverged across these species, far exceeding the interspecies variation in orthologous genes. A group of Ste12 targets was shown to be bound only in S. mikatae and S. bayanus under pseudohyphal conditions. Many of these genes are targets of Ste12 during mating in S. cerevisiae, indicating that specialization between the two pathways has occurred in this species. Transcription factor binding sites have therefore diverged substantially faster than ortholog content. Thus, gene regulation resulting from transcription factor binding is likely to be a major cause of divergence between related species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Borneman, Anthony R -- Gianoulis, Tara A -- Zhang, Zhengdong D -- Yu, Haiyuan -- Rozowsky, Joel -- Seringhaus, Michael R -- Wang, Lu Yong -- Gerstein, Mark -- Snyder, Michael -- New York, N.Y. -- Science. 2007 Aug 10;317(5839):815-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17690298" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Candida albicans/genetics/growth & development/metabolism ; Chromatin Immunoprecipitation ; DNA-Binding Proteins/genetics/metabolism ; *Evolution, Molecular ; Fungal Proteins/genetics/*metabolism ; Gene Expression Regulation, Fungal ; Gene Regulatory Networks ; Genes, Fungal ; Oligonucleotide Array Sequence Analysis ; *Regulatory Sequences, Nucleic Acid ; Saccharomyces/*genetics/growth & development/metabolism ; Saccharomyces cerevisiae/*genetics/growth & development/metabolism ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-10-19
    Description: Engineering radically altered genetic codes will allow for genomically recoded organisms that have expanded chemical capabilities and are isolated from nature. We have previously reassigned the translation function of the UAG stop codon; however, reassigning sense codons poses a greater challenge because such codons are more prevalent, and their usage regulates gene expression in ways that are difficult to predict. To assess the feasibility of radically altering the genetic code, we selected a panel of 42 highly expressed essential genes for modification. Across 80 Escherichia coli strains, we removed all instances of 13 rare codons from these genes and attempted to shuffle all remaining codons. Our results suggest that the genome-wide removal of 13 codons is feasible; however, several genome design constraints were apparent, underscoring the importance of a strategy that rapidly prototypes and tests many designs in small pieces.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lajoie, M J -- Kosuri, S -- Mosberg, J A -- Gregg, C J -- Zhang, D -- Church, G M -- New York, N.Y. -- Science. 2013 Oct 18;342(6156):361-3. doi: 10.1126/science.1241460.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24136967" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/genetics ; Base Sequence ; Codon/*genetics ; Escherichia coli/*genetics/growth & development ; Frameshift Mutation ; *Genes, Essential ; Genes, Synthetic ; Genetic Engineering ; Genome, Bacterial/*genetics ; Molecular Sequence Data
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-09-06
    Description: Author(s): X. H. Liu, W. Liu, and Z. D. Zhang We have systematically studied the evolution of magnetic properties, especially the coercivity and the remanence ratio in the vicinity of the Verwey transition temperature ( T V ) , of high-quality epitaxial Fe 3 O 4 thin films grown on MgO (001), MgAl 2 O 4 (MAO) (001), and SrTiO 3 (STO) (001) substrates. We ... [Phys. Rev. B 96, 094405] Published Tue Sep 05, 2017
    Keywords: Magnetism
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-06
    Description: Author(s): Y. Y. Dai, H. Wang, P. Tao, T. Yang, W. J. Ren, and Z. D. Zhang We show by micromagnetic simulations that a spontaneous skyrmion ground state can exist in Co/Ru/Co nanodisks without the Dzyaloshinsky-Moriya interaction, which can remain stable in the applied magnetic field along the + z direction even up to 0.44 T. The guiding center ( R x , R y ) of skyrmion defined b... [Phys. Rev. B 88, 054403] Published Mon Aug 05, 2013
    Keywords: Magnetism
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...