ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Balsam poplar  (2)
  • Eriophorum vaginatum  (2)
  • Nutrient deficiency  (2)
  • annual grassland  (2)
Collection
Keywords
Publisher
  • 1
    ISSN: 1432-1939
    Keywords: Eriophorum vaginatum ; E. scheuchzeri ; Growth ; Flowering ; Phenology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The evergreen tussock-forming Eriophorum vaginatum revealed consistently earlier (c. 1 moth) phenology and greater biomass per tiller than the summergreen rhizomatous E. scheuchzeri in all four components measured (vegetative and reproductive shoots and stems) under the same climatic regime in central Alaska over one growing season. Greatest allocation to vegetative shoot growth occurred in mid-summer in both species. The tussock growth form of E. vaginatum raised shoot meristems 25–30 cm above the soil surface, where temperatures were warmer, permitting shoot growth to begin earlier in spring and continue longer in autumn than in E. scheuchzeri. Consequently, E. vaginatum was able to allocate reserves to reproductive tillers primarily in autumn and early spring, times when minimal reserves were required for vegetative growth. By contrast, the rhizomatous E. scheuchzeri had a more constrained growing season, and allocation to reproduction coincided with allocation to vegetative growth. For this reason, reserves were drawn down more fully in mid-summer in E. scheuchzeri than in E. vaginatum. The more conservative use of nutrient stores in E. vaginatum may relate to its great longevity, reduced allocation to reproduction (including low seedling recruitment), and relatively stable habitats. The mid-seasonal pulse of allocation to reproduction in E. scheuchzeri appears viable only in relatively fertile disturbed sites, where the soil nutrient supply is sufficient to support simultaneous allocation to vegetative growth and reproduction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 88 (1991), S. 570-573 
    ISSN: 1432-1939
    Keywords: Eriophorum scheuchzeri ; Eriophorum vaginatum ; Ammonium ; Nitrate ; Absorption
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We compared ammonium and nitrate nutrition in Eriophorum scheuchzeri and E. vaginatum, two Alaskan sedges that are native to high- and low-fertility sites, respectively. When grown in solution culture, the two species were similar in their kinetics of NH inf4 sup+ NO inf3 sup- absorption: at nitrogen concentrations below 50 μM, net NH inf4 sup+ and NO inf3 sup- were absorbed at similar rates, but at higher concentrations, net uptake of NO inf3 sup- was significantly faster than that of NH inf4 sup+ . The two species also showed similar abilities to assimilate NO inf3 sup- . Growth of E. vaginatum under NO inf3 sup- nutrition was only slightly less than that under NH inf4 sup+ . The observed similarities between these species from contrasting edaphic habitats indicate that factors other than tissue-specific rates of nitrogen acquisition and assimilation may underlie local adaptation to soil N fertility. Moreover, the capacity of these species to exploit NO inf3 sup- as a N source supports the view that NO inf3 sup- availability may be significant even in wet, acidic, arctic soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Defoliation ; Compensatory growth ; Serengeti ; Phosphate uptake ; Nutrient deficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Two shortgrass species (Sporobolus ioclados and Eustachys paspaloides) and two midgrass species (E. paspaloides and Pennisetum mezianum) from the Serengeti grasslands of Tanzania were grown under conditions of extreme phosphorus (P) deficiency. Production of each of these species is maintained or enhanced by defoliation under adequate nutrient supply (McNaughton et al. 1983). However, under the P-deficient conditions of our experiment, defoliation caused a reduction in biomass of all plant parts of each species. Green leaf biomass was reduced most strongly by defoliation, and crowns were least affected. Yield of biomass and nutrients to grazers (green leaves+clipped material) was enhanced by weekly defoliation in the shortgrass grazing-adapted species, whereas yield to producers (live biomass and nutrients retained by the plant) and yield to decomposers (litter) were strongly reduced by defoliation in all species. Phosphate absorption capacity (V max) measured on excised roots was enhanced by defoliation in the grazing-adapted Sporobolus, but, due to low affinity (high K m) of roots of defoliated plants for phosphate, absorption rate was not greatly altered at low solution concentrations. Phosphate absorption capacity was reduced or unaffected by defoliation in other species. We conclude that under conditions of P deficiency, plants are unable to acquire the nutrients necessary to replenish large nutrient losses to grazers. In low-nutrient environments, compensatory growth (stimulation of production by grazing) is not a viable strategy. Therefore, in these environments plants respond evolutionarily to herbivores by developing chemical or morphological defenses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Keywords: Carbon/nutrient balance hypothesis ; Plant defense ; Snowshoe hare ; Balsam poplar
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The carbon/nutrient balance hypothesis fails to correctly predict effects of fertilization and shading on concentrations of defensive metabolites in Alaskan balsam poplar (Populus balsamifera). Of six metabolites analyzed, only one responded in the predicted fashion to fertilization and one to shading. These results and those of other similar studies suggest that while the carbon/nutrient balance hypothesis may correctly predict the effects of fertilization and shading on the concentrations of metabolic “end products”, it fails for many metabolites because of the dynamics associated with their production and turnover. In metabolites that turn over, static concentration is a poor predictor of defensive investment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical ecology 16 (1990), S. 1941-1959 
    ISSN: 1573-1561
    Keywords: Balsam poplar ; Populus balsamifera ; snowshoe hare ; Lepus americanus ; plant chemical defense ; herbivore ; cineol ; benzyl alcohol ; bisabolol ; 6-hydroxycyclohexenone ; salicaldehyde
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Palatabilities of parts and growth stages of balsam poplar (Populus balsamifera) to snowshoe hares (Lepus americanus) are related to concentrations of specific plant metabolites that act as antifeedants. Buds are defended from hares by cineol, benzyl alcohol, and (+)-α-bisabolol. Internodes are defended by 6-hydroxycylohexenone (6-HCH) and salicaldehyde. Although defense of interaodes depends upon both compounds, the defense of juvenile internodes is principally related to salicaldehyde concentration; the defense of internode current annual growth is principally related to 6-HCH concentration. The concentration of 6-HCH can be supplemented by the hydrolysis of phenol glycosides when plant tissue is disrupted, raising the possibility of a dynamic element of the chemical defense of poplar.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 72 (1983), S. 283-287 
    ISSN: 1573-5036
    Keywords: Barley ; Chinochloa ; Growth rate ; Nutrient deficiency ; Nutrient stress ; Phosphorus fractions ; Root-shoot ratio ; Taiga
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract High-nutrient-adapted and low-nutrient-adapted species of New Zealand tussock grasses (Chionochloa), barley (Hordeum), and several taiga trees were grown at three rates of phosphorus supply. Low-nutrient-adapted species in each group of species had similar (grasses) or lower (trees) capacities for phosphate absorption, were less efficient in producing biomass (i.e. had higher nutrient concentrations), and grew more slowly than high-nutrient-adapted species. I conclude that the major adaptation to low nutrient availability in each of these comparisons is a slow growth rate that reduces the annual nutrient requirement.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5036
    Keywords: annual grassland ; carbon-13 ; carbon dioxide ; carbon storage ; serpentine soil ; soil carbon ; statistical power
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract After four growing seasons, elevated CO2 did not significantly alter surface soil C pools in two intact annual grasslands. However, soil C pools in these systems are large compared to the likely changes caused by elevated CO2. We calculated statistical power to detect changes in soil C, using an approach applicable to all elevated CO2 experiments. The distinctive isotopic signature of the fossil-fuel-derived CO2 added to the elevated CO2 treatment provides a C tracer to determine the rate of incorporation of newly-fixed C into soil. This rate constrains the size of the possible effect of eievated CO2 on soil C. Even after four years of treatment, statistical power to detect plausible changes in soil C under elevated CO2 is quite low. Analysis of other elevated CO2 experiments in the literature indicates that either CO2 does not affect soil C content, or that reported CO2 effects on soil C are too large to be a simple consequence of increased plant carbon inputs, suggesting that other mechanisms are involved, or that the differences are due to chance. Determining the effects of elevated CO2 on total soil C and long-term C storage requires more powerful experimental techniques or experiments of longer duration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-515X
    Keywords: annual grassland ; elevated CO2 ; first autumn rains ; gross mineralization ; gross nitrification ; 15N ; 15N pool dilution ; NO ; N2O ; NPK fertilizer ; trace gases
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We examined the effects of growth carbon dioxide (CO2)concentration and soil nutrient availability on nitrogen (N)transformations and N trace gas fluxes in California grasslandmicrocosms during early-season wet-up, a time when rates of Ntransformation and N trace gas flux are high. After plant senescenceand summer drought, we simulated the first fall rains and examined Ncycling. Growth at elevated CO2 increased root productionand root carbon:nitrogen ratio. Under nutrient enrichment, elevatedCO2 increased microbial N immobilization during wet-up,leading to a 43% reduction in gross nitrification anda 55% reduction in NO emission from soil. ElevatedCO2 increased microbial N immobilization at ambientnutrients, but did not alter nitrification or NO emission. ElevatedCO2 did not alter soil emission of N2O ateither nutrient level. Addition of NPK fertilizer (1:1:1) stimulatedN mineralization and nitrification, leading to increased N2Oand NO emission from soil. The results of our study support a mechanisticmodel in which elevated CO2 alters soil N cycling and NOemission: increased root production and increased C:N ratio in elevatedCO2 stimulate N immobilization, thereby decreasingnitrification and associated NO emission when nutrients are abundant.This model is consistent with our basic understanding of how C availabilityinfluences soil N cycling and thus may apply to many terrestrial ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...