ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 78 (1989), S. 393-399 
    ISSN: 1432-2242
    Keywords: Autopolyploidy ; Chloroplast DNA variation ; Dactylis glomerata L. ; Intraspecific evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Chloroplast DNA variation has been used to examine some of the maternal lineages involved in the evolution of the intraspecific polyploid complex, Dactylis glomerata L. Diploid (2x) and tetraploid (4x) individuals were collected from natural populations of the subspecies glomerata (4x), marina (4x) and lusitanica (2x), as well as from sympatric 2x/4x populations of the Galician type. Digestion of their ctDNA with 11 restriction endonucleases revealed enough variation to characterise three ctDNA variants, designated MBMK, MBmK and mBMK. The distribution of these ctDNA variants reflects different stages in their spread among the populations. The MBMK ctDNA variant predominated at both ploidy levels in subspecies glomerata, lusitanica and marina, and in recent tetraploid Galician/glomerata hybrids. The MBmK variant was detected in a single tetraploid individual and probably results from a relatively recent mutation. Fixation of the mBMK minority variant in the diploid and tetraploid Galician populations adds to the evidence concerning the possible origin of the Galician tetraploids. It means that the Galician diploids were maternal ancestors of the tetraploids. This result complements evidence from earlier studies based on morphology or biochemical markers, and reduces the likelihood that the tetraploids arose by hybridisation between an ancient Galician diploid and an alien tetraploid. It is, however, consistent with a true autopolyploid origin of the tetraploids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Triticum ; Aegilops ; Chloroplast DNA ; Cytoplasmic inheritance ; Wheat evolution ; The B genome donor ; Restriction mapping ; Insertions ; Deletions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Restriction endonuclease analysis revealed interspecific and intraspecific variation between the chloroplast DNAs and therefore between the cytoplasms of 14 selected species of Triticum and Aegilops. Eleven distinct chloroplast DNA types were detected, the differences between them residing in the varied combination of a relatively few DNA alterations. The variation was simple enough for chloroplast DNA analysis to be used as a basis for the identification and classification of the Triticum and Aegilops cytoplasms. There was good agreement with the classification based on analysis of the phenotypic effects of the cytoplasm when combined with the T. aestivum nucleus in nuclear-cytoplasmic hybrids (Tsunewaki et al. 1976). There was however no correlation between specific chloroplast DNA alterations and any of the phenotypic effects known to be associated with specific cytoplasms. Although the diploid species examined included all those which have been suggested as possible donors of the cytoplasm and the B genome to T. aestivum, none of the chosen accessions belonged to the same cytoplasmic class as T. aestivum itself, except that of the tetraploid T. dicoccoides. Therefore, none of the diploid accessions analysed was the B genome donor. The analyses did however support several other suggestions which have been made concerning wheat ancestry. Scoring the different chloroplast DNA types according to the rarity of their banding patterns indicated that four of the eleven cytoplasms are of relatively recent origin. The DNA alterations most easily detectable by the limited comparison of the eleven Triticum/Aegilops chloroplast DNA types using only 4 endonucleases were insertions and deletions. These ranged between approximately 50 bp and 1,200 bp in size and most of them were clustered in 2 segments of the large single-copy region of the genome. Only two examples of the loss of restriction endonuclease sites through possible point mutations were observed. No variation was detected in the inverted repeat regions. Several of the deletions and insertions map close to known chloroplast protein genes, and there is also an indication that the more variable regions of the chloroplast genome may contain sequences which have allowed DNA recombination and rearrangement to occur.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...