ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): B12102, doi:10.1029/2004JB003141.
    Description: Mid-ocean ridge volcanic activity is the fundamental process for creation of ocean crust, yet the dynamics of magma emplacement along the slow spreading Mid-Atlantic Ridge (MAR) are largely unknown. We present acoustical, seismological, and biological evidence of a magmatic dike intrusion at the Lucky Strike segment, the first detected from the deeper sections (〉1500 m) of the MAR. The dike caused the largest teleseismic earthquake swarm recorded at Lucky Strike in 〉20 years of seismic monitoring, and one of the largest ever recorded on the northern MAR. Hydrophone records indicate that the rate of earthquake activity decays in a nontectonic manner and that the onset of the swarm was accompanied by 30 min of broadband (〉3 Hz) intrusion tremor, suggesting a volcanic origin. Two submersible investigations of high-temperature vents located at the summit of Lucky Strike Seamount 3 months and 1 year after the swarm showed a significant increase in microbial activity and diffuse venting. This magmatic episode may represent one form of volcanism along the MAR, where highly focused pockets of magma are intruded sporadically into the shallow ocean crust beneath long-lived, discrete volcanic structures recharging preexisting seafloor hydrothermal vents and ecosystems.
    Description: This study was made possible through the support of the U.S. National Science Foundation (grants OCE-9811575, OCE- 0137164, and OCE-0201692) and the NOAA Vents Program.
    Keywords: Mid-Atlantic Ridge ; Earthquake ; Hydroacoustic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q0AG11, doi:10.1029/2012GC004210.
    Description: At the oceanic core complex that forms the Atlantis Massif at 30°N on the Mid-Atlantic Ridge, slip along the detachment fault for the last 1.5–2 Ma has brought lower crust and mantle rocks to the seafloor. Hydroacoustic data collected between 1999 and 2003 suggest that seismicity occurred near the top of the Massif, mostly on the southeastern section, while detected seismicity along the adjacent ridge axis was sparse. In 2005, five short-period ocean bottom seismographs (OBS) were deployed on and around the Massif as a pilot experiment to help constrain the distribution of seismicity in this region. Analysis of six months of OBS data indicates that, in contrast to the results of the earlier hydroacoustic study, the vast majority of the seismicity is located within the axial valley. During the OBS deployment, and within the array, seismicity was primarily composed of a relatively constant background rate and two large aftershock sequences that included 5 teleseismic events with magnitudes between 4.0 and 4.5. The aftershock sequences were located on the western side of the axial valley adjacent to the Atlantis Massif and close to the ridge-transform intersection. They follow Omori's law, and constitute more than half of the detected earthquakes. The OBS data also indicate a low but persistent level of seismicity associated with active faulting within the Atlantis Massif in the same region as the hydroacoustically detected seismicity. Within the Massif, the data indicate a north-south striking normal fault, and a left-lateral, strike-slip fault near a prominent, transform-parallel, north-facing scarp. Both features could be explained by changes in the stress field at the inside corner associated with weak coupling on the Atlantis transform. Alternatively, the normal faulting within the Massif might indicate deformation of the detachment surface as it rolls over to near horizontal from an initial dip of about 60° beneath the axis, and the strike-slip events may indicate transform-parallel movement on adjacent detachment surfaces.
    Description: We thank the Deep Ocean Exploration Institute at WHOI, Director of Research at WHOI, WHOI’s Department of Geology and Geophysics, and the National Science Foundation for funding the data collection.
    Description: 2013-04-09
    Keywords: Atlantis Massif ; Mid-Atlantic Ridge ; T-phase ; Hydroacoustic ; Oceanic detachment fault ; Seismicity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-11-04
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Parnell-Turner, R., Smith, D. K., & Dziak, R. P. Hydroacoustic monitoring of seafloor spreading and transform faulting in the equatorial Atlantic Ocean. Journal of Geophysical Research: Solid Earth, 127(7), (2022): e2022JB024008, https://doi.org/10.1029/2022JB024008.
    Description: Seismicity along mid-ocean ridges and oceanic transform faults provides insights into the processes of crustal accretion and strike-slip deformation. In the equatorial Atlantic ocean, the slow-spreading Mid-Atlantic Ridge is offset by some of the longest-offset transform faults on Earth, which remain relatively poorly understood due to its remote location far from land-based teleseismic receivers. A catalog of T-phase events detected by an array of 10 autonomous hydrophones deployed between 2011 and 2015, extending from 20°N to 10°S is presented. The final catalog of 6,843 events has a magnitude of completeness of 3.3, compared to 4.4 for the International Seismic Center teleseismic catalog covering the same region, and allows investigation of the dual processes of crustal accretion and transform fault slip. The seismicity rate observed at asymmetric spreading segments (those hosting detachment faults) is significantly higher than that of symmetric spreading centers, and 74% of known hydrothermal vents along the equatorial Mid-Atlantic Ridge occur on asymmetric spreading segments. Aseismic patches are present on nearly all equatorial Atlantic transform faults, including on the Romanche transform where regional rotation and transpression could explain both bathymetric uplift and reduction in seismic activity. The observed patterns in seismicity provide insight into the thermal and mechanical structure of the ridge axis and associated transform faults, and potentially provide a method for investigating the distribution of hydrothermal vent systems.
    Description: This research was supported by National Science Foundation Grants EAR-1062238, EAR-1062165, and OCE-1839727. This paper is NOAA Pacific Marine Environmental Laboratory contribution 5323.
    Keywords: Mid-ocean ridge ; Oceanic transform fault ; T-phase ; Earthquake ; Hydrothermal vent
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...