ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Marine Geology 264 (2009): 4-15, doi:10.1016/j.margeo.2009.01.009.
    Description: The nearly complete coverage of the U.S. Atlantic continental slope and rise by multibeam bathymetry and backscatter imagery provides an opportunity to reevaluate the distribution of submarine landslides along the margin and reassess the controls on their formation. Landslides can be divided into two categories based on their source areas: those sourced in submarine canyons and those sourced on the open continental slope and rise. Landslide distribution is in part controlled by the Quaternary history of the margin. They cover 33% of the continental slope and rise of the glacially influenced New England margin, 16% of the sea floor offshore of the fluvially dominated Middle Atlantic margin, and 13% of the sea floor south of Cape Hatteras. The headwall scarps of open-slope sourced landslides occur mostly on the lower slope and upper rise while they occur mostly on the upper slope in the canyon-sourced ones. The deposits from both landslide categories are generally thin (mostly 20–40 m thick) and comprised primarily of Quaternary material, but the volumes of the open-slope sourced landslide deposits can be larger (1–392 km3) than the canyon-sourced ones (1–10 km3). The largest failures are located seaward of shelf-edge deltas along the southern New England margin and near salt domes that breach the sea floor south of Cape Hatteras. The spatial distribution of landslides indicates that earthquakes associated with rebound of the glaciated part of the margin or earthquakes associated with salt domes were probably the primary triggering mechanism although other processes may have pre-conditioned sediments for failure. The largest failures and those that have the potential to generate the largest tsunamis are the open-slope sourced landslides.
    Description: The U.S. Nuclear Regulatory Commission and the U.S. Geological Survey are acknowledged for their support of this research.Work was funded by US Nuclear Regulatory Commission grant N6480 Physical study of tsunami sources.
    Keywords: Landslides ; Continental margin ; Atlantic Ocean ; Sediments ; Slope processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 40 (2013): 4244-4248, doi:10.1002/grl.50830.
    Description: Active tectonic regions where plate boundaries transition from subduction to strike slip can take several forms, such as triple junctions, acute, and obtuse corners. Well‐documented slab tears that are associated with high rates of intermediate‐depth seismicity are considered here: Gibraltar arc, the southern and northern ends of the Lesser Antilles arc, and the northern end of Tonga trench. Seismicity at each of these locations occurs, at times, in the form of swarms or clusters, and various authors have proposed that each marks an active locus of tear propagation. The swarms and clusters start at the top of the slab below the asthenospheric wedge and extend 30–60 km vertically downward within the slab. We propose that these swarms and clusters are generated by fluid‐related embrittlement of mantle rocks. Focal mechanisms of these swarms generally fit the shear motion that is thought to be associated with the tearing process.
    Keywords: Slab tear ; Intermediate seismicity ; Subduction corner
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. Published in 2005 by the American Geophysical Union. The definitive version was published in Journal of Geophysical Research 110 (2005): B06404, doi:10.1029/2004JB003459.
    Description: The Puerto Rico trench exhibits great water depth, an extremely low gravity anomaly, and a tilted carbonate platform between (reconstructed) elevations of +1300 m and −4000 m. I argue that these features are manifestations of large vertical movements of a segment of the Puerto Rico trench, its forearc, and the island of Puerto Rico that took place 3.3 m.y. ago over a time period as short as 14–40 kyr. I explain these vertical movements by a sudden increase in the slab's descent angle that caused the trench to subside and the island to rise. The increased dip could have been caused by shearing or even by a complete tear of the descending North American slab, although the exact nature of this deformation is unknown. The rapid (14–40 kyr) and uniform tilt along a 250 km long section of the trench is compatible with scales of mantle flow and plate bending. The proposed shear zone or tear is inferred from seismic, morphological, and gravity observations to start at the trench at 64.5°W and trend southwestwardly toward eastern Puerto Rico. The tensile stresses necessary to deform or tear the slab could have been generated by increased curvature of the trench following a counterclockwise rotation of the upper plate and by the subduction of a large seamount.
    Keywords: Dynamic topography ; Slab tear ; Puerto Rico trench ; Caribbean plate ; Challenger Deep ; Seamount subduction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 3365513 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...