ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: On Vesta, the thermal behavior of areas of unusual albedo seen at the local scale can be related to physical properties that can provide information about the origin of those materials. We used Dawn s Visible and Infrared Mapping Spectrometer (VIR) hyperspectral cubes to retrieve surface temperatures and emissivities, with high accuracy as long as temperatures are greater than ~180 K. Data acquired in the Survey phase (23 July through 29 August 2011) show several unusual surface features: 1) high-albedo (bright) and low-albedo (dark) material deposits, 2) spectrally distinct ejecta and pitted materials, 3) regions suggesting finer-grained materials. Some of the unusual dark and bright features were reobserved by VIR in the subsequent High-Altitude Mapping Orbit (HAMO) and Low- Altitude Mapping Orbit (LAMO) phases at increased pixel resolution. In this work we present temperature maps and emissivities of several local-scale features that were observed by Dawn under different illumination conditions and different local solar times. Data from VIR's IR channel show that bright regions generally correspond to regions with lower thermal emission, i.e. lower temperature, while dark regions correspond to areas with higher thermal emission, i.e. higher temperature. This behavior confirms that many of the dark appearances in the VIS mainly reflect albedo variations, and not, for example, shadowing. During maximum daily insolation, dark features in the equatorial region may rise to temperatures greater than 270 K, while brightest features stop at roughly 258 K, local solar time being similar. However, pitted materials, showing relatively low reflectance, have significantly lower temperatures, as a result of differences in composition and/or structure (e.g, average grain size of the surface regolith, porosity, etc.). To complement this work, we provide preliminary values of thermal inertia for some bright and dark features.
    Keywords: Astrophysics
    Type: JSC-CN-27019 , 44th Annual Meeting AAS; Oct 14, 2012 - Oct 19, 2012; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: We present the main results obtained comparing the visible-near infrared (VIS-NIR) spectra Vesta s surface with howardites, eucrites, diogenites (HEDs). HEDs are commonly associated with Vesta based on spectral similarities. Because of such association, much effort is being made to merge the information from HEDs as well as Vestoids with that from Vesta to characterize the lithologic diversity of the surface of this asteroid and to infer clues regarding its thermal history. The Dawn spacecraft, orbiting around Vesta since July 2011, is performing detailed observations of this body and thus improving our knowledge of its properties. Dawn s scientific payload includes an imaging spectrometer, VIR-MS, sensitive to the VIS-NIR spectral range. VIR-MS began acquiring spectra during the approach phase that started in May 2011 and will continue its observations through July 2012 when the spacecraft will depart Vesta to travel to Ceres. The observations are uniformly distributed in latitude and longitude, allowing a global view of Vesta s crustal spectral properties. Using the information provided by VIR spectra, we studied the distribution of the spectral heterogeneities on the surface and used our findings to perform a comparison with HED spectra in the VIS-NIR spectral range searching for analogies and/or incompatibilities. In our analysis, we utilized a method to compare the results obtained at microscopic scale on HED samples and the one obtained at macroscopic scale on the surface of Vesta. The intent of this study is to improve our understanding of the connection between Vesta and the HEDs, which is one of the primary Dawn scientific objectives. Dawn VIR spectra are characterized by pyroxene absorptions and most of the surface materials exhibit howardite-like spectra. However, some large areas can be interpreted to be material richer in diogenite (based on pyroxenes band depths and band centers) and some others like eucrite-rich howardite terrains. In particular, VIR data strongly indicate in the south polar region (Rheasilvia) the presence of Mg-pyroxene-rich terrains. The hypothesis that Vesta is the HED parent body is consistent with, and strengthened by, the geologic and spectral context for pyroxene distribution provided by VIR on Dawn.
    Keywords: Astrophysics
    Type: JSC-CN-25728 , European Geosciences Union General Assembly 2012; Apr 22, 2012 - Apr 27, 2012; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: On Vesta, the region of the infrared spectrum beyond approximately 3.5 micrometers is dominated by the thermal emission of the asteroid's surface, which can be used to determine surface temperature by means of temperature-retrieval algorithms. The thermal behavior of areas of unusual albedo seen at the local scale can be related to physical properties that can provide information about the origin of those materials. Dawn's Visible and Infrared Mapping Spectrometer (VIR) hyperspectral cubes are used to retrieve surface temperatures, with high accuracy as long as temperatures are greater than 180 K. Data acquired in the Survey phase (23 July through 29 August 2011) show several unusual surface features: 1) high-albedo (bright) and low-albedo (dark) material deposits, 2) spectrally distinct ejecta, 3) regions suggesting finer-grained materials. Some of the unusual dark and bright features were re-observed by VIR in the subsequent High-Altitude Mapping Orbit (HAMO) and Low-Altitude Mapping Orbit (LAMO) phases at increased pixel resolution. To calculate surface temperatures, we applied a Bayesian approach to nonlinear inversion based on the Kirchhoff law and the Planck function. These results were cross-checked through application of alternative methods. Here we present temperature maps of several local-scale features that were observed by Dawn under different illumination conditions and different local solar times. Some bright terrains have an overall albedo in the visible as much as 40% brighter than surrounding areas. Data from the IR channel of VIR show that bright regions generally correspond to regions with lower thermal emission, i.e. lower temperature, while dark regions correspond to areas with higher thermal emission, i.e. higher temperature. This behavior confirms that many of the dark appearances in the VIS mainly reflect albedo variations. In particular, it is shown that during maximum daily insolation, dark features in the equatorial region may rise to temperatures greater than 270 K. However, individual features may show different thermal behaviours, as a result of differences in composition and/or structure (e.g, average grain size of the surface regolith, porosity, etc.). To complement the temperature and near-infrared emissivity derived from the infrared spectra, a separate work is devoted to calculate thermal inertia and other thermal properties using theoretical models which solve the heat equation for airless bodies, and model the distribution of temperatures due to surface roughness variations.
    Keywords: Astrophysics
    Type: JSC-CN-25734 , European Geosciences Union General Assembly 2012; Apr 22, 2012 - Apr 27, 2012; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: One of the goals of the NEAR-Shoemaker mission to 433 Eros was to determine if it has a meteoritic analog. The primary means of making such a link are the X-ray/gamma-ray spectrometers, which measure elemental compositions of the surface, and the multi-spectral imager (MSI) and near-infrared spectrometer (NIS), which measure spectral reflectance. For determining meteoritic analogs using the X-ray/gamma-ray spectrometer data, the primary data used for comparison is the set of bulk chemical analyses of meteorites done by Jarosewich. These bulk chemical analyses were done on samples now found in the Smithsonian's Analyzed Meteorite Powder collection (USNM 7073). For determining meteoritic analogs using MSI/NIS spectral data, the primary data used for comparison is the set of meteoritic spectra compiled by Gaffey. To expand the set of meteoritic spectra available to the scientific community, we have initiated a spectral study of over 70 samples (primarily ordinary chondrites) found in the Smithsonian's Analyzed Meteorite Powder collection and an electron microprobe study of their corresponding thin sections. This set of spectral and compositional data should allow for better constraints on the distribution of meteorites in plots of band area ratios versus Band I centers and the usefulness of equations for deriving mineralogic compositions from band parameters. These spectral data can also be combined with previous spectral studies of other meteorite types such as the primitive achondrites, eucrites, and angrites to determine how useful the derived band parameters are for differentiating between different meteorite classes. These spectral data can also be used for testing the Modified Gaussian Model (MGM) for determining modal abundances and mafic mineral chemistries from reflectance spectra.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: At 525 km in mean diameter, Vesta is the second-most massive object in the main asteroid belt of our Solar System. At all scales, pyroxene absorptions are the most prominent spectral features on Vesta and overall, Vesta mineralogy indicates a complex magmatic evolution that led to a differentiated crust and mantle [1]. The thermal behavior of areas of unusual albedo seen on the surface at the local scale can be related to physical properties that can provide information about the origin of those materials. Dawn's Visible and Infrared Mapping Spectrometer (VIR) [2] hyperspectral images are routinely used, by means of temperature-retrieval algorithms, to compute surface temperatures along with spectral emissivities. Here we present temperature maps of several local-scale features of Vesta that were observed by Dawn under different illumination conditions and different local solar times.
    Keywords: Astrophysics
    Type: JSC-CN-28873 , WHISPERS 2013: Annual Workshop on Hyperspectral Image and Signal Processing; Jun 25, 2013 - Jun 28, 2013; Gainesville, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-15
    Description: Spectroscopy remains a powerful tool for inferring the modal mineralogy and mafic mineral composition of asteroid surfaces. Since similar measurements can be made on meteorite samples, spectroscopy can help link the two populations and add spatial and geologic context to detailed geochemical knowledge derived from meteorite samples. For example, analysis of the recent NEAR-Shoemaker mission to Eros include detailed study of NIS spectra to assess the affinity of Eros to ordinary chondrites. As discussed in these studies, pyroxene (PYX) and olivine (OLV) absorption are readily detectable in the spectra. Furthermore, subtleties in band parameters (position vs. area) suggest the presence of both low- and high-calcium pyroxene (LCP and HCP), as expected from the petrology of ordinary chondrites. However unambiguous identification and detailed compositional inferences for both LCP and HCP (and OLV) are difficult from band parameters analysis. In this study, we examine spectra of S-asteroids and meteorites with the Modified Gaussian Model (MGM), an absorption band model, to explore the role of HCP in these silicate-rich spectra.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-15
    Description: Spectroscopy remains a powerful tool for inferring the modal mineralogy and mafic mineral composition of asteroid surfaces. Since similar measurements can be made on meteorite samples, spectroscopy can help link the two populations and add spatial and geologic context to detailed geo knowledge derived from meteorite samples. For example, analysis of the recent NEAR-Shoemaker mission to Eros include detailed study of NIS spectra to assess the affinity of Eros to ordinary chondrites. As discussed in these studies, pyrox (PYX) and olivine (OLV) absorption are readily detectable in the spectra. Furthermore, subtleties in band parameters (position vs. area) suggest the presence of both low- and high-calcium pyroxene (LCP and HCP), as expected from the petrology of ordinary chondrites. However unambiguous identification and detailed compositional inferences for both LCP and HCP (and OLV) are difficult from band parameters analysis. In this study, we examine spectra of S-asteroids and meteorites with the Modified Gaussian Model (MGM), an absorption band model, to explore the role of HCP in these silicate-rich spectra.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...