ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Recent advances in room-temperature, near-IR and visible diode laser sources for tele-communication, high-speed computer networks, and optical data storage applications are enabling a new generation of gas-dynamic and combustion-flow sensors based on laser absorption spectroscopy. In addition to conventional species concentration and density measurements, spectroscopic techniques for temperature, velocity, pressure and mass flux have been demonstrated in laboratory, industrial and technical flows. Combined with fibreoptic distribution networks and ultrasensitive detection strategies, compact and portable sensors are now appearing for a variety of applications. In many cases, the superior spectroscopic quality of the new laser sources compared with earlier cryogenic, mid-IR devices is allowing increased sensitivity of trace species measurements, high-precision spectroscopy of major gas constituents, and stable, autonomous measurement systems. The purpose of this article is to review recent progress in this field and suggest likely directions for future research and development. The various laser-source technologies are briefly reviewed as they relate to sensor applications. Basic theory for laser absorption measurements of gas-dynamic properties is reviewed and special detection strategies for the weak near-IR and visible absorption spectra are described. Typical sensor configurations are described and compared for various application scenarios, ranging from laboratory research to automated field and airborne packages. Recent applications of gas-dynamic sensors for air flows and fluxes of trace atmospheric species are presented. Applications of gas-dynamic and combustion sensors to research and development of high-speed flows aeropropulsion engines, and combustion emissions monitoring are presented in detail, along with emerging flow control systems based on these new sensors. Finally, technology in nonlinear frequency conversion, UV laser materials, room-temperature mid-IR materials and broadly tunable multisection devices is reviewed to suggest new sensor possibilities.
    Keywords: Environment Pollution
    Type: Measurement science & technology (ISSN 0957-0233); Volume 9; 4; 545-62
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-23
    Description: Infrared ozone spectra from near nadir observations have provided atmospheric ozone information from the sensor to the Earth's surface. Simulations of the NPOESS Airborne Sounder Testbed-Interferometer (NAST-I) from the NASA ER-2 aircraft (approximately 20 km altitude) with a spectral resolution of 0.25/cm were used for sensitivity analysis. The spectral sensitivity of ozone retrievals to uncertainties in atmospheric temperature and water vapor is assessed in order to understand the relationship between the IR emissions and the atmospheric state. In addition, ozone spectral radiance sensitivity to its ozone layer densities and radiance weighting functions reveals the limit of the ozone profile retrieval accuracy from NAST-I measurements. Statistical retrievals of ozone with temperature and moisture retrievals from NAST-I spectra have been investigated and the preliminary results from NAST-I field campaigns are presented.
    Keywords: Environment Pollution
    Type: Hyperspectral Remote Sensing of the Land and Atmosphere; Volume 4151; 277-283
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-08
    Description: Turbulence in molecular clouds is well recognized, but the resultant diffusive transport and its effects on the chemical structure of the clouds have not been extensively investigated.
    Keywords: Astrophysics
    Type: The Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: Context. Transient neutrino sources such as Gamma-Ray Bursts (GRBs) and Supernovae (SNe) are hypothesized to emit bursts of high-energy neutrinos on a time-scale of 〈 or approx.100 s. While GRB neutrinos would be produced in high relativistic jets, core-collapse SNe might host soft-relativistic jets, which become stalled in the outer layers of the progenitor star leading to an efficient production of high-energy neutrinos. Aims. To increase the sensitivity to these neutrinos and identify their sources, a low-threshold optical follow-up program for neutrino multiplets detected with the IceCube observatory has been implemented. Methods. If a neutrino multiplet, i.e. two or more neutrinos from the same direction within 100 s, is found by IceCube a trigger is sent to the Robotic Optical Transient Search Experiment, ROTSE. The 4 ROTSE telescopes immediately start an observation program of the corresponding region of the sky in order to detect an optical counterpart to the neutrino events. Results. No statistically significant excess in the rate of neutrino multiplets has been observed and furthermore no coincidence with an optical counterpart was found. Conclusions. The search allows, for the first time, to set stringent limits on current models predicting a high-energy neutrino flux from soft relativistic hadronic jets in core-collapse SNe. We conclude that a sub-population of SNe with typical Lorentz boost factor and jet energy of 10 and 3 x 10(exp 51) erg, respectively, does not exceed 4:2% at 90% confidence.
    Keywords: Astrophysics
    Type: GSFC.JA.5925.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Recent observations of GeV /TeV photon emission from several X-ray binaries have sparked a renewed interest in these objects as galactic particle accelerators. In spite of the available multi-wavelength data, their acceleration mechanisms are not determined, and the nature of the accelerated particles (hadrons or leptons) is unknown. While much evidence favors leptonic emission, it is very likely that a hadronic component is also accelerated in the jets of these binary systems. The observation of neutrino emission would be clear evidence for the presence of a hadronic component in the outflow of these sources. In this paper we look for periodic neutrino emission from binary systems. Such modulation, observed in the photon flux, would be caused by the geometry of these systems. The results of two searches are presented that differ in the treatment of the spectral shape and phase of the emission. The 'generic' search allows parameters to vary freely and best fit values, in a 'model-dependent' search, predictions are used to constrain these parameters. We use the IceCube data taken from May 31, 2007 to April 5, 2008 with its 22-string configuration, and from April 5, 2008 and May 20, 2009 with its 40-string configuration. For the generic search and the 40 string sample, we find that the most significant source in the catalog of 7 binary stars is Cygnus X-3 with a 1.8% probability after trials (2.10" sigma one-sided) of being produced by statistical fluctuations of the background. The model-dependent method tested a range of system geometries - the inclination and the massive star's disk size - for LS I+61 deg 303, no significant excess was found.
    Keywords: Astrophysics
    Type: GSFC.JA.5866.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-15
    Description: Using results from a time-dependent photochemical model to calculate the diurnal variation of NO and NO2, we have corrected Atmospheric Trace MOlecule Spectroscopy (ATMOS) solar-occultation retrievals of the NO and NO2 abundances at 90' solar zenith angle. Neglecting to adjust for the rapid variation of these gases across the terminator results in potential errors in retrieved profiles of approximately 20% for NO2 and greater than 100% for NC at altitudes below 25 km. Sensitivity analysis indicates that knowledge of the local 03 and temperature profiles, rather than zonal mean or climatological conditions of these quantities, is required to obtain reliable retrievals of NO and NO2 in the lower stratosphere. Extremely inaccurate 03 or temperature values at 20 km can result in 50% errors in retrieved NO or NO2. Mixing ratios of NO in the mid-latitude, lower stratosphere measured by ATMOS during the November 1994 ATLAS-3 mission compare favorably with in situ ER-2 observations, providing strong corroboration of the reliability of the adjusted space-borne measurements.
    Keywords: Environment Pollution
    Type: Paper-96GL01196 , ATLAS Series of Shuttle Missions (ISSN 0094-8534); 23; 17; 2373-2376; NASA-TM-112752
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...