ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-07-26
    Description: Duane's retraction syndrome (DRS) is a complex congenital eye movement disorder caused by aberrant innervation of the extraocular muscles by axons of brainstem motor neurons. Studying families with a variant form of the disorder (DURS2-DRS), we have identified causative heterozygous missense mutations in CHN1, a gene on chromosome 2q31 that encodes alpha2-chimaerin, a Rac guanosine triphosphatase-activating protein (RacGAP) signaling protein previously implicated in the pathfinding of corticospinal axons in mice. We found that these are gain-of-function mutations that increase alpha2-chimaerin RacGAP activity in vitro. Several of the mutations appeared to enhance alpha2-chimaerin translocation to the cell membrane or enhance its ability to self-associate. Expression of mutant alpha2-chimaerin constructs in chick embryos resulted in failure of oculomotor axons to innervate their target extraocular muscles. We conclude that alpha2-chimaerin has a critical developmental function in ocular motor axon pathfinding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2593867/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2593867/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyake, Noriko -- Chilton, John -- Psatha, Maria -- Cheng, Long -- Andrews, Caroline -- Chan, Wai-Man -- Law, Krystal -- Crosier, Moira -- Lindsay, Susan -- Cheung, Michelle -- Allen, James -- Gutowski, Nick J -- Ellard, Sian -- Young, Elizabeth -- Iannaccone, Alessandro -- Appukuttan, Binoy -- Stout, J Timothy -- Christiansen, Stephen -- Ciccarelli, Maria Laura -- Baldi, Alfonso -- Campioni, Mara -- Zenteno, Juan C -- Davenport, Dominic -- Mariani, Laura E -- Sahin, Mustafa -- Guthrie, Sarah -- Engle, Elizabeth C -- G9900837/Medical Research Council/United Kingdom -- G9900989/Medical Research Council/United Kingdom -- R01 EY015298/EY/NEI NIH HHS/ -- R01 EY015298-01/EY/NEI NIH HHS/ -- R01 EY015298-02/EY/NEI NIH HHS/ -- R01 EY015298-03/EY/NEI NIH HHS/ -- R01 EY015298-04/EY/NEI NIH HHS/ -- R01 EY015298-05/EY/NEI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Aug 8;321(5890):839-43. doi: 10.1126/science.1156121. Epub 2008 Jul 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine (Genetics), Children's Hospital Boston, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18653847" target="_blank"〉PubMed〈/a〉
    Keywords: Abducens Nerve/abnormalities ; Amino Acid Sequence ; Animals ; Axons/physiology ; Cell Line ; Cell Membrane/metabolism ; Chick Embryo ; Chimerin 1/chemistry/*genetics/*metabolism ; Duane Retraction Syndrome/*genetics ; Female ; Gene Expression Profiling ; Heterozygote ; Humans ; Male ; Molecular Sequence Data ; *Mutation, Missense ; Oculomotor Muscles/embryology/innervation/metabolism ; Oculomotor Nerve/abnormalities/embryology ; Pedigree
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-01-12
    Description: The DNA origami method, in which long, single-stranded DNA segments are folded into shapes by short staple segments, was used to create nucleic acid probe tiles that are molecular analogs of macroscopic DNA chips. One hundred trillion probe tiles were fabricated in one step and bear pairs of 20-nucleotide-long single-stranded DNA segments that act as probe sequences. These tiles can hybridize to their targets in solution and, after adsorption onto mica surfaces, can be examined by atomic force microscopy in order to quantify binding events, because the probe segments greatly increase in stiffness upon hybridization. The nucleic acid probe tiles have been used to study position-dependent hybridization on the nanoscale and have also been used for label-free detection of RNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ke, Yonggang -- Lindsay, Stuart -- Chang, Yung -- Liu, Yan -- Yan, Hao -- New York, N.Y. -- Science. 2008 Jan 11;319(5860):180-3. doi: 10.1126/science.1150082.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Single Molecule Biophysics, Arizona State University, Tempe, AZ 85287, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18187649" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/genetics ; Adsorption ; Aluminum Silicates ; Animals ; Cell Line ; DNA, Single-Stranded ; Gene Expression Profiling/*methods ; Genes, RAG-1 ; Genes, myc ; Mice ; Microscopy, Atomic Force ; *Molecular Probe Techniques ; *Nanostructures ; Nucleic Acid Hybridization/*methods ; *Oligonucleotide Probes ; RNA/*analysis/genetics ; Sensitivity and Specificity ; Solubility
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Impacts into forsterite and orthoenstatite at speeds typically encountered by comets demonstrate that shock imparted by collisions is detectable in the infrared signatures of their dust. The spectral signatures can be traced to physical alterations in their crystalline structures, as observed in TEM imaging and modeled using a dipole approximation. These results yield tantalizing insights into the collisional history of our solar system, as well as the history of individual comets and Trojan asteroids.
    Keywords: Astrophysics
    Type: JSC-CN-26222 , Asteroids, Comets, Meteors 2012; May 16, 2012 - May 20, 2012; Niigata; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Comets and asteroids have weathered dynamic histories, as evidenced by their rough surfaces. The Nice model describes a violent reshuffling of small bodies during the Late Heavy Bombardment, with collisions acting to grind these planetesimals away. This creates an additional source of impact material that can re-work the surfaces of the larger bodies over the lifetime of the solar system. Here, we investigate the possibility that signatures due to impacts (e.g. from micrometeoroids or meteoroids) could be detected in their spectra, and how that can be explained by the physical manifestation of shock in the crystalline structure of minerals. All impact experiments were conducted in the Johnson Space Center Experimental Impact Laboratory using the vertical gun. Impact speeds ranged from approx.2.0 km/s to approx.2.8 km/s. All experiments were conducted at room temperature. Minerals found in comets and asteroids were chosen as targets, including diopside (MgCaSi2O6, monoclinic pyroxene), magnesite (MgCO3, carbonate), and fayalite (FeSiO4, olivine). Impacted samples were analyzed using a Fourier Transform Infrared Spectrometer (FTIR) and a Transmission Electron Microscope (TEM). Absorbance features in the 8-13 m spectral region demonstrate relative amplitude changes as well as wavelength shifts. Corresponding TEM images exhibit planar shock dislocations in the crystalline structure, attributed to deformation at high strain and low temperatures. Elongating or shortening the axes of the crystalline structure of forsterite (Mg2SiO4, olivine) using a discrete dipole approximation model (Lindsay et al., submitted) yields changes in spectral features similar to those observed in our impacted laboratory minerals.
    Keywords: Astrophysics
    Type: JSC-CN-26880 , 44th Annual Meeting of the Division of Planetary Sciences American Astronomical Society; Oct 14, 2012 - Oct 19, 2012; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...