ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing; Oceanography  (6)
  • Oceanography; Earth Resources and Remote Sensing  (4)
  • Aquatic  (1)
  • Essential Climate Variable  (1)
  • General  (1)
  • 1
    Publication Date: 2019-07-12
    Description: Following the launch of the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polarorbiting Partnership (NPP) spacecraft, the NASA NPP VIIRS Ocean Science Team (VOST) began an evaluation of ocean color data products to determine whether they could continue the existing NASA ocean color climate data record (CDR). The VOST developed an independent evaluation product based on NASA algorithms with a reprocessing capability. Here we present a preliminary assessment of both the operational ocean color data products and the NASA evaluation data products regarding their applicability to NASA science objectives.
    Keywords: Earth Resources and Remote Sensing; Oceanography
    Type: GSFC-E-DAA-TN6396
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-20
    Description: Extending OCI hyperspectral radiance measurements in the ultraviolet to 320 nm on the blue spectrograph enables quantitation of atmospheric total column ozone (O3) for use in ocean color atmospheric correction algorithms. The strong absorption by atmospheric ozone below 340 nm enables the quantification of total column ozone. Other applications are possible but were not investigated due to their exploratory nature and lower priority.The first step in the atmospheric correction processing, which converts top-of-the-atmosphere radiances to water-leaving radiances, is removal of the absorbance by atmospheric trace gases such as water vapor, oxygen, ozone and nitrogen dioxide. Details of the atmospheric correction process currently used by the Ocean Biology Processing Group (OBPG) and will be employed for PACE with appropriate modifications, are described by Mobley et al. [2016]. Atmospheric ozone absorbs within the visible to near-infrared spectrum between ~450 nm and 800nm and most appreciably between 530 nm and 650 nm, a spectral region critical for maintaining NASA's chlorophyll-a climate data record and for PACE algorithms planned to characterize phytoplankton community composition and other ocean color products.While satellite-based observations will likely be available during PACE's mission lifetime, the difference in acquisition time with PACE, the coarseness in their spatial resolution, and differences in viewing geometries will introduce significant levels of uncertainties in PACE ocean color data products.
    Keywords: General
    Type: NASA/TM?2018-219027/ Vol. 7 , GSFC-E-DAA-TN65853
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Short-term (sub-diurnal) biological and biogeochemical processes cannot be fully captured by the current suite of polar-orbiting satellite ocean color sensors, as their temporal resolution is limited to potentially one clear image per day. Geostationary sensors, such as the Geostationary Ocean Color Imager (GOCI) from the Republic of Korea, allow the study of these short-term processes because their orbit permit the collection of multiple images throughout each day for any area within the sensors field of regard. Assessing the capability to detect sub-diurnal changes in in-water properties caused by physical and biogeochemical processes characteristic of open ocean and coastal ocean ecosystems, however, requires an understanding of the uncertainties introduced by the instrument and/or geophysical retrieval algorithms. This work presents a study of the uncertainties during the daytime period for an ocean region with characteristically low-productivity with the assumption that only small and undetectable changes occur in the in-water properties due to biogeochemical processes during the daytime period. The complete GOCI mission data were processed using NASAs SeaDAS/l2gen package. The assumption of homogeneity of the study region was tested using three-day sequences and diurnal statistics. This assumption was found to hold based on the minimal diurnal and day-to-day variability in GOCI data products. Relative differences with respect to the midday value were calculated for each hourly observation of the day in order to investigate what time of the day the variability is greater. Also, the influence of the solar zenith angle in the retrieval of remote sensing reflectances and derived products was examined. Finally, we determined that the uncertainties in water-leaving remote-sensing reflectance (Rrs) for the 412,443, 490, 555, 660 and 680 nm bands on GOCI are 8.05 x 10(exp -4), 5.49 x 10(exp -4), 4.48 x 10(exp -4), 2.51 x 10(exp -4), 8.83 x 10(exp -5), and 1.36 x 10(exp -4)/sr, respectively, and 1.09 x 10(exp -2)/cu.mgm for the chlorophyll-a concentration (Chl-a), 2.09 x 10(exp -3)/m for the absorption coefficient of chromophoric dissolved organic matter at 412 nm (a(sub g) (412)), and 3.7 mg/cu.m for particulate organic carbon (POC). These R(sub rs) values can be considered the threshold values for detectable changes of the in-water properties due to biological, physical or biogeochemical processes from GOCI.
    Keywords: Earth Resources and Remote Sensing; Oceanography
    Type: GSFC-E-DAA-TN65762 , Remote Sensing (ISSN 2072-4292); 11; 3; 295
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: A key on-orbit calibration step for satellite remote sensing of ocean color is the vicarious calibration. This establishes the final gains for each spectral band on the sensor that minimize bias in the retrieved ocean color signal. The vicarious calibration is specific to the instrument and the atmospheric correction algorithm. The vicarious calibration gains for the Geostationary Ocean Color Imager (GOCI) are presented here, which were derived to optimize the performance ofNASA's standard atmospheric correction algorithm as implemented in the l2gen code and distributed through the SeaDAS open-source software package. Following NASA's protocols, the near-infrared(NIR) bands were calibrated first, and the visible bands were then calibrated relative to this fixed NIR calibration. The gain for the 745-nm NIR band was derived using a fixed aerosol model, which waschosen based on the Angstrom Coefficients derived from MODIS onAqua (MODISA). For the vicarious gains of the visible bands, twosources for the target water-leaving radiances were tested: matchupsfrom MODISA and climatological data from SeaWiFS. A validation analysis using AERONET-OC data shows an improvement in sensor performance when compared with results using the current vicarious gains and results using no vicarious calibration. Good agreement was found in vicarious gains derived using both concurrent MODISA and climatological SeaWiFS as vicarious calibration data sources. These results support the use of a concurrent sensor for the vicarious calibration when in situ data are not available and demonstrate that using climatology from a well-calibrated sensor like SeaWiFSfor the vicarious calibration is a valid alternative when it is not possible to use a concurrent sensor or in situ data. We recommend using the gains derived from concurrent GOCI matchups with MODISA for GOCI processing in SeaDAS/l2gen.
    Keywords: Earth Resources and Remote Sensing; Oceanography
    Type: GSFC-E-DAA-TN65760 , International Journal of Remote Sensing (ISSN 0143-1161) (e-ISSN 1366-5901)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-14
    Description: Photosynthetic production of organic matter by microscopic oceanic phytoplankton fuels ocean ecosystems and contributes roughly half of the Earth's net primary production. For 13 years, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission provided the first consistent, synoptic observations of global ocean ecosystems. Changes in the surface chlorophyll concentration, the primary biological property retrieved from SeaWiFS, have traditionally been used as a metric for phytoplankton abundance and its distribution largely reflects patterns in vertical nutrient transport. On regional to global scales, chlorophyll concentrations covary with sea surface temperature (SST) because SST changes reflect light and nutrient conditions. However, the oceanmay be too complex to be well characterized using a single index such as the chlorophyll concentration. A semi-analytical bio-optical algorithm is used to help interpret regional to global SeaWiFS chlorophyll observations from using three independent, well-validated ocean color data products; the chlorophyll a concentration, absorption by CDM and particulate backscattering. First, we show that observed long-term, global-scale trends in standard chlorophyll retrievals are likely compromised by coincident changes in CDM. Second, we partition the chlorophyll signal into a component due to phytoplankton biomass changes and a component caused by physiological adjustments in intracellular chlorophyll concentrations to changes in mixed layer light levels. We show that biomass changes dominate chlorophyll signals for the high latitude seas and where persistent vertical upwelling is known to occur, while physiological processes dominate chlorophyll variability over much of the tropical and subtropical oceans. The SeaWiFS data set demonstrates complexity in the interpretation of changes in regional to global phytoplankton distributions and illustrates limitations for the assessment of phytoplankton dynamics using chlorophyll retrievals alone.
    Keywords: Earth Resources and Remote Sensing; Oceanography
    Type: GSFC-E-DAA-TN8941 , Remote Sensing of Environment; 135; 77-91
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Sensor design and mission planning for satellite ocean color measurements requires careful consideration of the signal dynamic range and sensitivity (specifically here signal-to-noise ratio or SNR) so that small changes of ocean properties (e.g., surface chlorophyll-a concentrations or Chl) can be quantified while most measurements are not saturated. Past and current sensors used different signal levels, formats, and conventions to specify these critical parameters, making it difficult to make cross-sensor comparisons or to establish standards for future sensor design. The goal of this study is to quantify these parameters under uniform conditions for widely used past and current sensors in order to provide a reference for the design of future ocean color radiometers. Using measurements from the Moderate Resolution Imaging Spectroradiometer onboard the Aqua satellite (MODISA) under various solar zenith angles (SZAs), typical (L(sub typical)) and maximum (L(sub max)) at-sensor radiances from the visible to the shortwave IR were determined. The Ltypical values at an SZA of 45 deg were used as constraints to calculate SNRs of 10 multiband sensors at the same L(sub typical) radiance input and 2 hyperspectral sensors at a similar radiance input. The calculations were based on clear-water scenes with an objective method of selecting pixels with minimal cross-pixel variations to assure target homogeneity. Among the widely used ocean color sensors that have routine global coverage, MODISA ocean bands (1 km) showed 2-4 times higher SNRs than the Sea-viewing Wide Field-of-view Sensor (Sea-WiFS) (1 km) and comparable SNRs to the Medium Resolution Imaging Spectrometer (MERIS)-RR (reduced resolution, 1.2 km), leading to different levels of precision in the retrieved Chl data product. MERIS-FR (full resolution, 300 m) showed SNRs lower than MODISA and MERIS-RR with the gain in spatial resolution. SNRs of all MODISA ocean bands and SeaWiFS bands (except the SeaWiFS near-IR bands) exceeded those from prelaunch sensor specifications after adjusting the input radiance to L(sub typical). The tabulated L(sub typical), L(sub max), and SNRs of the various multiband and hyperspectral sensors under the same or similar radiance input provide references to compare sensor performance in product precision and to help design future missions such as the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission and the Pre-Aerosol-Clouds-Ecosystems (PACE) mission currently being planned by the U.S. National Aeronautics and Space Administration (NASA).
    Keywords: Oceanography; Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN9164 , Applied Optics; 51; 25; 6045-6062
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Launched in late 2011, the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) spacecraft is being evaluated by NASA to determine whether this sensor can continue the ocean color data record established through the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and the MODerate resolution Imaging Spectroradiometer (MODIS). To this end, Goddard Space Flight Center generated evaluation ocean color data products using calibration techniques and algorithms established by NASA during the SeaWiFS and MODIS missions. The calibration trending was subjected to some initial sensitivity and uncertainty analyses. Here we present an introductory assessment of how the NASA-produced time series of ocean color is influenced by uncertainty in trending instrument response over time. The results help quantify the uncertainty in measuring regional and global biospheric trends in the ocean using satellite remote sensing, which better define the roles of such records in climate research.
    Keywords: Oceanography; Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN14894 , 2014 SPIE Ocean Sensing and Monitoring VI/Science Tech and Applications; May 05, 2014 - May 09, 2014; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The established procedure to access the quality of atmospheric correction processors and their underlying algorithms is the comparison of satellite data products with related in-situ measurements. Although this approach addresses the accuracy of derived geophysical properties in a straight forward fashion, it is also limited in its ability to catch systematic sensor and processor dependent behaviour of satellite products along the scan-line, which might impair the usefulness of the data in spatial analyses. The Ocean Colour Climate Change Initiative (OC-CCI) aims to create an ocean colour dataset on a global scale to meet the demands of the ecosystem modelling community. The need for products with increasing spatial and temporal resolution that also show as little systematic and random errors as possible, increases. Due to cloud cover, even temporal means can be influenced by along-scanline artefacts if the observations are not balanced and effects cannot be cancelled out mutually. These effects can arise from a multitude of results which are not easily separated, if at all. Among the sources of artefacts, there are some sensor-specific calibration issues which should lead to similar responses in all processors, as well as processor-specific features which correspond with the individual choices in the algorithms. A set of methods is proposed and applied to MERIS data over two regions of interest in the North Atlantic and the South Pacific Gyre. The normalised water leaving reflectance products of four atmospheric correction processors, which have also been evaluated in match-up analysis, is analysed in order to find and interpret systematic effects across track. These results are summed up with a semi-objective ranking and are used as a complement to the match-up analysis in the decision for the best Atmospheric Correction (AC) processor. Although the need for discussion remains concerning the absolutes by which to judge an AC processor, this example demonstrates clearly, that relying on the match-up analysis alone can lead to misjudgement.
    Keywords: Earth Resources and Remote Sensing; Oceanography
    Type: GSFC-E-DAA-TN23656 , Remote Sensing of the Enviornment; 162; 257-270
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-26
    Description: A generalized coccolithophore bloom classifier has been developed for use with ocean color imagery. The bloom classifier was developed using extracted satellite reflectance data from SeaWiFS images screened by the default bloom detection mask. In the current application, we extend the optical water type (OWT) classification scheme by adding a new coccolithophore bloom class formed from these extracted reflectances. Based on an in situ coccolithophore data set from the North Atlantic, the detection levels with the new scheme were between 1,500 and 1,800 coccolithophore cellsmL and 43,000 and 78,000 lithsmL. The detected bloom area using the OWT method was an average of 1.75 times greater than the default bloom detector based on a collection of SeaWiFS 1 km imagery. The versatility of the scheme is shown with SeaWiFS, MODIS Aqua, CZCS and MERIS imagery at the 1 km scale. The OWT scheme was applied to the daily global SeaWiFS imagery mission data set (years 19972010). Based on our results, average annual coccolithophore bloom area was more than two times greater in the southern hemisphere compared to the northern hemi- sphere with values of 2.00 106 km2 and 0.75 106 km2, respectively. The new algorithm detects larger bloom areas in the Southern Ocean compared to the default algorithm, and our revised global annual average of 2.75106 km2 is dominated by contributions from the Southern Ocean.
    Keywords: Oceanography; Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN9161 , Remote Sensing of Environments (ISSN 0034-4257); 117; 249-263
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The Operational Land Imager (OLI) onboard Landsat-8 is generating high-quality aquatic science products, the most critical of which is the remote sensing reflectance (Rrs), defined as the ratio of water-leaving radiance to the total downwelling irradiance just above water. The quality of the Rrs products has not, however, been extensively assessed. This manuscript provides a comprehensive evaluation of Level-1B, i.e., top of atmosphere reflectance, and Rrs products available from OLI imagery under near-ideal atmospheric conditions in moderately turbid waters. The procedure includes a) evaluations of the Rrs products at sites included in the Ocean Color component of the Aerosol Robotic Network (AERONET-OC), b) intercomparisons and cross-calibrations against other ocean color products, and c) optimizations of vicarious calibration gains across the entire OLI observing swath. Results indicate that the near-infrared and shortwave infrared (NIR-SWIR) band combinations yield the most robust and stable Rrs retrievals in moderately turbid waters. Intercomparisons against products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Moderate Resolution Imaging Spectroradiometer onboard the Aqua platform (MODISA) indicate slight across-track non-uniformities (〈1%) associated with OLI scenes in the blue bands. In both product domains (TOA and Rrs), on average, the OLI products were found larger in radiometric responses in the blue channels. Following the implementation of updated vicarious calibration gains and accounting for across-track non-uniformities, matchup analyses using independent in-situ validation data confirmed improvements in Rrs products. These findings further support high-fidelity OLI-derived aquatic science products in terms of both demonstrating a robust atmospheric correction method and providing consistent products across OLI's imaging swath.
    Keywords: Oceanography; Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN43369 , Remote Sensing of Environment (ISSN 0034-4257); 190; 289-301
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...