ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-04-06
    Description: Successful repair after tissue injury and inflammation requires resolution of the inflammatory response and removal of extracellular matrix breakdown products. We have examined whether the cell-surface adhesion molecule and hyaluronan receptor CD44 plays a role in resolving lung inflammation. CD44-deficient mice succumb to unremitting inflammation following noninfectious lung injury, characterized by impaired clearance of apoptotic neutrophils, persistent accumulation of hyaluronan fragments at the site of tissue injury, and impaired activation of transforming growth factor-beta1. This phenotype was partially reversed by reconstitution with CD44+ cells, thus demonstrating a critical role for this receptor in resolving lung inflammation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Teder, Priit -- Vandivier, R William -- Jiang, Dianhua -- Liang, Jiurong -- Cohn, Lauren -- Pure, Ellen -- Henson, Peter M -- Noble, Paul W -- HL60539/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2002 Apr 5;296(5565):155-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Pulmonary and Critical Care Section, Yale University School of Medicine, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11935029" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD44/*physiology ; Apoptosis ; Bleomycin ; Bone Marrow Transplantation ; Bronchoalveolar Lavage Fluid/chemistry/cytology ; Cell Count ; Chemokines/genetics/metabolism ; Chimera ; Humans ; Hyaluronic Acid/analysis/metabolism ; Lung/immunology/metabolism/*pathology ; Lung Diseases, Interstitial/*immunology/metabolism/*pathology ; Macrophages, Alveolar/physiology ; Mice ; Mice, Inbred C57BL ; Neutrophil Infiltration ; Neutrophils ; Phagocytosis ; Phenotype ; Pulmonary Alveoli/immunology/metabolism/pathology ; RNA, Messenger/genetics/metabolism ; Transforming Growth Factor beta/metabolism ; Transforming Growth Factor beta1
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-10-04
    Description: Transcription factor E3 (mTFE3) is a murine transcription activator that binds to the intronic enhancer of the immunoglobulin heavy chain gene. A naturally occurring splice product of mTFE3 messenger RNA (mRNA) lacked 105 nucleotides that encode an activation domain; both absolute and relative amounts of long and truncated mRNAs varied in different tissues. Cells were cotransfected with complementary DNAs that encoded the two mRNA forms in amounts that corresponded to the amounts of each mRNA found in different cells. Small changes in substoichiometric amounts of the truncated form of mRNA effected trans-dominant negative modulation of mTFE3 activity. These findings identify a function for differential splicing in the regulation of transcription factor activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roman, C -- Cohn, L -- Calame, K -- R01CA38571/CA/NCI NIH HHS/ -- R01GM28361/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Oct 4;254(5028):94-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1840705" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors ; DNA-Binding Proteins/*genetics ; *Gene Expression Regulation ; Mice ; Molecular Sequence Data ; RNA Splicing ; RNA, Messenger/genetics ; Regulatory Sequences, Nucleic Acid ; Structure-Activity Relationship ; Transcription Factors/*genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-04-08
    Description: Aortic aneurysm and dissection are manifestations of Marfan syndrome (MFS), a disorder caused by mutations in the gene that encodes fibrillin-1. Selected manifestations of MFS reflect excessive signaling by the transforming growth factor-beta (TGF-beta) family of cytokines. We show that aortic aneurysm in a mouse model of MFS is associated with increased TGF-beta signaling and can be prevented by TGF-beta antagonists such as TGF-beta-neutralizing antibody or the angiotensin II type 1 receptor (AT1) blocker, losartan. AT1 antagonism also partially reversed noncardiovascular manifestations of MFS, including impaired alveolar septation. These data suggest that losartan, a drug already in clinical use for hypertension, merits investigation as a therapeutic strategy for patients with MFS and has the potential to prevent the major life-threatening manifestation of this disorder.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1482474/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1482474/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Habashi, Jennifer P -- Judge, Daniel P -- Holm, Tammy M -- Cohn, Ronald D -- Loeys, Bart L -- Cooper, Timothy K -- Myers, Loretha -- Klein, Erin C -- Liu, Guosheng -- Calvi, Carla -- Podowski, Megan -- Neptune, Enid R -- Halushka, Marc K -- Bedja, Djahida -- Gabrielson, Kathleen -- Rifkin, Daniel B -- Carta, Luca -- Ramirez, Francesco -- Huso, David L -- Dietz, Harry C -- K08 HL067056/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2006 Apr 7;312(5770):117-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16601194" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-Antagonists/administration & dosage/therapeutic use ; Angiotensin II Type 1 Receptor Blockers/administration & dosage/*therapeutic use ; Animals ; Antibodies/immunology ; Aorta/pathology ; Aortic Aneurysm/etiology/*prevention & control ; *Disease Models, Animal ; Elastic Tissue/pathology ; Female ; Losartan/administration & dosage/*therapeutic use ; Lung/pathology ; Lung Diseases/drug therapy/pathology ; Marfan Syndrome/complications/*drug therapy/metabolism/pathology ; Mice ; Microfilament Proteins/genetics ; Mutation ; Neutralization Tests ; Pregnancy ; Pregnancy Complications/drug therapy ; Propranolol/administration & dosage/therapeutic use ; Pulmonary Alveoli/pathology ; Receptor, Angiotensin, Type 1/metabolism ; Signal Transduction ; Transforming Growth Factor beta/antagonists & inhibitors/immunology/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-04-16
    Description: Transforming growth factor-beta (TGFbeta) signaling drives aneurysm progression in multiple disorders, including Marfan syndrome (MFS), and therapies that inhibit this signaling cascade are in clinical trials. TGFbeta can stimulate multiple intracellular signaling pathways, but it is unclear which of these pathways drives aortic disease and, when inhibited, which result in disease amelioration. Here we show that extracellular signal-regulated kinase (ERK) 1 and 2 and Smad2 are activated in a mouse model of MFS, and both are inhibited by therapies directed against TGFbeta. Whereas selective inhibition of ERK1/2 activation ameliorated aortic growth, Smad4 deficiency exacerbated aortic disease and caused premature death in MFS mice. Smad4-deficient MFS mice uniquely showed activation of Jun N-terminal kinase-1 (JNK1), and a JNK antagonist ameliorated aortic growth in MFS mice that lacked or retained full Smad4 expression. Thus, noncanonical (Smad-independent) TGFbeta signaling is a prominent driver of aortic disease in MFS mice, and inhibition of the ERK1/2 or JNK1 pathways is a potential therapeutic strategy for the disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111087/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111087/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holm, Tammy M -- Habashi, Jennifer P -- Doyle, Jefferson J -- Bedja, Djahida -- Chen, YiChun -- van Erp, Christel -- Lindsay, Mark E -- Kim, David -- Schoenhoff, Florian -- Cohn, Ronald D -- Loeys, Bart L -- Thomas, Craig J -- Patnaik, Samarjit -- Marugan, Juan J -- Judge, Daniel P -- Dietz, Harry C -- P01 AR049698/AR/NIAMS NIH HHS/ -- P01 AR049698-07/AR/NIAMS NIH HHS/ -- R01 AR041135/AR/NIAMS NIH HHS/ -- R01 AR041135-12/AR/NIAMS NIH HHS/ -- R01 AR041135-17/AR/NIAMS NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 15;332(6027):358-61. doi: 10.1126/science.1192149.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21493862" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthracenes/pharmacology/therapeutic use ; Aorta/pathology ; Aortic Aneurysm/*metabolism/pathology/physiopathology/prevention & control ; Diphenylamine/analogs & derivatives/pharmacology/therapeutic use ; Disease Models, Animal ; Disease Progression ; Enzyme Activation ; Losartan/pharmacology/therapeutic use ; *MAP Kinase Signaling System ; Marfan Syndrome/drug therapy/*metabolism/pathology ; Mice ; Mitogen-Activated Protein Kinase 1/antagonists & inhibitors/*metabolism ; Mitogen-Activated Protein Kinase 3/antagonists & inhibitors/*metabolism ; Mitogen-Activated Protein Kinase 8/antagonists & inhibitors/metabolism ; Protein Kinase Inhibitors/pharmacology/therapeutic use ; Smad2 Protein/metabolism ; Smad4 Protein/deficiency/genetics ; Sulfonamides/pharmacology/therapeutic use ; Transforming Growth Factor beta/antagonists & inhibitors/immunology/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-06-12
    Description: Chitin is a surface component of parasites and insects, and chitinases are induced in lower life forms during infections with these agents. Although chitin itself does not exist in humans, chitinases are present in the human genome. We show here that acidic mammalian chitinase (AMCase) is induced via a T helper-2 (Th2)-specific, interleukin-13 (IL-13)-mediated pathway in epithelial cells and macrophages in an aeroallergen asthma model and expressed in exaggerated quantities in human asthma. AMCase neutralization ameliorated Th2 inflammation and airway hyperresponsiveness, in part by inhibiting IL-13 pathway activation and chemokine induction. AMCase may thus be an important mediator of IL-13-induced responses in Th2-dominated disorders such as asthma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhu, Zhou -- Zheng, Tao -- Homer, Robert J -- Kim, Yoon-Keun -- Chen, Ning Yuan -- Cohn, Lauren -- Hamid, Qutayba -- Elias, Jack A -- P50-HL-56/HL/NHLBI NIH HHS/ -- R01-HL-074095/HL/NHLBI NIH HHS/ -- R01-HL-61904/HL/NHLBI NIH HHS/ -- R01-HL-64242/HL/NHLBI NIH HHS/ -- R01-HL-66571/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2004 Jun 11;304(5677):1678-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, Department of Internal Medicine, 300 Cedar Street, TAC S-441, New Haven, CT 06520-8057, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15192232" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Allergens ; Animals ; Asthma/*enzymology/immunology ; Bronchoalveolar Lavage Fluid/chemistry ; Chemokines/metabolism ; Chitin/metabolism ; Chitinase/antagonists & inhibitors/genetics/immunology/*metabolism ; Epithelial Cells/enzymology ; Female ; Humans ; Hydrogen-Ion Concentration ; Immune Sera ; Interleukin-13/*metabolism ; Interleukins/genetics/metabolism ; Lung/*enzymology/immunology ; Macrophages, Alveolar/enzymology ; Mice ; Mice, Inbred Strains ; Mice, Transgenic ; Ovalbumin/immunology ; Respiratory Mucosa/enzymology ; Th2 Cells/*immunology ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-06-23
    Description: Medulloblastoma is a malignant childhood brain tumour comprising four discrete subgroups. Here, to identify mutations that drive medulloblastoma, we sequenced the entire genomes of 37 tumours and matched normal blood. One-hundred and thirty-six genes harbouring somatic mutations in this discovery set were sequenced in an additional 56 medulloblastomas. Recurrent mutations were detected in 41 genes not yet implicated in medulloblastoma; several target distinct components of the epigenetic machinery in different disease subgroups, such as regulators of H3K27 and H3K4 trimethylation in subgroups 3 and 4 (for example, KDM6A and ZMYM3), and CTNNB1-associated chromatin re-modellers in WNT-subgroup tumours (for example, SMARCA4 and CREBBP). Modelling of mutations in mouse lower rhombic lip progenitors that generate WNT-subgroup tumours identified genes that maintain this cell lineage (DDX3X), as well as mutated genes that initiate (CDH1) or cooperate (PIK3CA) in tumorigenesis. These data provide important new insights into the pathogenesis of medulloblastoma subgroups and highlight targets for therapeutic development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412905/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412905/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Robinson, Giles -- Parker, Matthew -- Kranenburg, Tanya A -- Lu, Charles -- Chen, Xiang -- Ding, Li -- Phoenix, Timothy N -- Hedlund, Erin -- Wei, Lei -- Zhu, Xiaoyan -- Chalhoub, Nader -- Baker, Suzanne J -- Huether, Robert -- Kriwacki, Richard -- Curley, Natasha -- Thiruvenkatam, Radhika -- Wang, Jianmin -- Wu, Gang -- Rusch, Michael -- Hong, Xin -- Becksfort, Jared -- Gupta, Pankaj -- Ma, Jing -- Easton, John -- Vadodaria, Bhavin -- Onar-Thomas, Arzu -- Lin, Tong -- Li, Shaoyi -- Pounds, Stanley -- Paugh, Steven -- Zhao, David -- Kawauchi, Daisuke -- Roussel, Martine F -- Finkelstein, David -- Ellison, David W -- Lau, Ching C -- Bouffet, Eric -- Hassall, Tim -- Gururangan, Sridharan -- Cohn, Richard -- Fulton, Robert S -- Fulton, Lucinda L -- Dooling, David J -- Ochoa, Kerri -- Gajjar, Amar -- Mardis, Elaine R -- Wilson, Richard K -- Downing, James R -- Zhang, Jinghui -- Gilbertson, Richard J -- P01 CA096832/CA/NCI NIH HHS/ -- P01CA96832/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- P30CA021765/CA/NCI NIH HHS/ -- R01 CA129541/CA/NCI NIH HHS/ -- R01CA129541/CA/NCI NIH HHS/ -- England -- Nature. 2012 Aug 2;488(7409):43-8. doi: 10.1038/nature11213.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉St Jude Children's Research Hospital, Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722829" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CREB-Binding Protein/genetics ; Cadherins/genetics ; Cdh1 Proteins ; Cell Cycle Proteins/deficiency/genetics ; Cell Lineage ; Cerebellar Neoplasms/*classification/*genetics/pathology ; Child ; DEAD-box RNA Helicases/genetics ; DNA Copy Number Variations ; DNA Helicases/genetics ; DNA Mutational Analysis ; Disease Models, Animal ; Genome, Human/genetics ; Genomics ; Hedgehog Proteins/metabolism ; Histone Demethylases/genetics ; Histones/metabolism ; Humans ; Medulloblastoma/*classification/*genetics/pathology ; Methylation ; Mice ; Mutation/*genetics ; Nuclear Proteins/genetics ; Phosphatidylinositol 3-Kinases/genetics ; Transcription Factors/genetics ; Wnt Proteins/metabolism ; beta Catenin/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1995-08-11
    Description: Cystic fibrosis transmembrane regulator (CFTR), the gene product that is mutated in cystic fibrosis (CF) patients, has a well-recognized function as a cyclic adenosine 3',5'-monophosphate (cAMP)-regulated chloride channel, but this property does not account for the abnormally high basal rate and cAMP sensitivity of sodium ion absorption in CF airway epithelia. Expression of complementary DNAs for rat epithelial Na+ channel (rENaC) alone in Madin Darby canine kidney (MDCK) epithelial cells generated large amiloride-sensitive sodium currents that were stimulated by cAMP, whereas coexpression of human CFTR with rENaC generated smaller basal sodium currents that were inhibited by cAMP. Parallel studies that measured regulation of sodium permeability in fibroblasts showed similar results. In CF airway epithelia, the absence of this second function of CFTR as a cAMP-dependent regulator likely accounts for abnormal sodium transport.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stutts, M J -- Canessa, C M -- Olsen, J C -- Hamrick, M -- Cohn, J A -- Rossier, B C -- Boucher, R C -- CFF R026/PHS HHS/ -- HL 34322/HL/NHLBI NIH HHS/ -- HL 42384/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1995 Aug 11;269(5225):847-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill 27599-7020, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7543698" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Absorption ; Amiloride/pharmacology ; Animals ; Cell Line ; Cell Membrane Permeability ; Chloride Channels/metabolism ; Cyclic AMP/*metabolism ; Cystic Fibrosis/*metabolism ; Cystic Fibrosis Transmembrane Conductance Regulator ; DNA, Complementary ; Dogs ; Humans ; Membrane Proteins/*metabolism ; Mice ; Patch-Clamp Techniques ; Rats ; Sodium/metabolism ; Sodium Channels/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-04-26
    Description: The evolution of novel cell types led to the emergence of new tissues and organs during the diversification of animals. The origin of the chondrocyte, the cell type that synthesizes cartilage matrix, was central to the evolution of the vertebrate endoskeleton. Cartilage-like tissues also exist outside the vertebrates, although their relationship to vertebrate cartilage is enigmatic. Here we show that protostome and deuterostome cartilage share structural and chemical properties, and that the mechanisms of cartilage development are extensively conserved--from induction of chondroprogenitor cells by Hedgehog and beta-catenin signalling, to chondrocyte differentiation and matrix synthesis by SoxE and SoxD regulation of clade A fibrillar collagen (ColA) genes--suggesting that the chondrogenic gene regulatory network evolved in the common ancestor of Bilateria. These results reveal deep homology of the genetic program for cartilage development in Bilateria and suggest that activation of this ancient core chondrogenic network underlies the parallel evolution of cartilage tissues in Ecdysozoa, Lophotrochozoa and Deuterostomia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tarazona, Oscar A -- Slota, Leslie A -- Lopez, Davys H -- Zhang, GuangJun -- Cohn, Martin J -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 May 5;533(7601):86-9. doi: 10.1038/nature17398. Epub 2016 Apr 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, UF Genetics Institute, University of Florida, PO Box 103610, Gainesville, Florida 32610, USA. ; Department of Biology, University of Florida, PO Box 103610, Gainesville, Florida 32610, USA. ; Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, PO Box 103610, Gainesville, Florida 32610, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27111511" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cartilage/anatomy & histology/embryology/metabolism ; Chondrocytes/cytology ; Chondrogenesis/*genetics ; Conserved Sequence/*genetics ; Decapodiformes/cytology/embryology/genetics/metabolism ; *Evolution, Molecular ; Fibrillar Collagens/genetics ; Gene Expression Regulation, Developmental/*genetics ; Gene Regulatory Networks ; Hedgehog Proteins/metabolism ; Invertebrates/cytology/*embryology/*genetics/metabolism ; *Phylogeny ; Signal Transduction ; Stem Cells/cytology ; Vertebrates/anatomy & histology/genetics ; beta Catenin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1979-08-31
    Description: Tritium-labeled complementary RNA's to two cloned sea urchin DNA sequences, one coding for histones H1, H2B, and H4 and the other for H2A and H3, were hybridized in situ to high resolution human chromosomes. Evidence is presented showing that the histone genes in man are localized in bands q32-36 on the long arm of chromosome 7.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chandler, M E -- Kedes, L H -- Cohn, R H -- Yunis, J J -- New York, N.Y. -- Science. 1979 Aug 31;205(4409):908-10.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/472711" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosome Mapping ; Chromosomes/ultrastructure ; *Chromosomes, Human, 6-12 and X ; *Genes ; Histones/*genetics ; Humans ; Lymphocytes/ultrastructure ; Nucleic Acid Hybridization ; Sea Urchins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1986-07-11
    Description: The ninth component of complement (C9) and the pore-forming protein (PFP or perforin) from cytotoxic T lymphocytes polymerize to tubular lesions having an internal diameter of 100 A and 160 A, respectively, when bound to lipid bilayers. Polymerized C9, assembled by slow spontaneous or rapid Zn2+-induced polymerization, and polyperforin, which is assembled only in the presence of Ca2+, constitute large aqueous pores that are stable, nonselective for solutes, and insensitive to changes of membrane potential. Monospecific polyclonal antibodies to purified C9 and PFP show cross-reactivity, suggesting structural homology between the two molecules. The structural and functional homologies between these two killer molecules imply an active role for pore formation during cell lysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Young, J D -- Cohn, Z A -- Podack, E R -- AI070127/AI/NIAID NIH HHS/ -- AI18525/AI/NIAID NIH HHS/ -- CA3019/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1986 Jul 11;233(4760):184-90.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2425429" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Centrifugation, Isopycnic ; Complement C9/*immunology/physiology ; Cross Reactions ; Humans ; Ion Channels/physiology ; *Membrane Glycoproteins ; Membrane Proteins/*immunology/physiology ; Mice ; Molecular Weight ; Perforin ; Pore Forming Cytotoxic Proteins ; T-Lymphocytes, Cytotoxic/*physiology ; Zinc/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...