ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animalia; Behaviour; Bottles or small containers/Aquaria (〈20 L); Brackish waters; Bryozoa; Bugula neritina; Growth/Morphology; Laboratory experiment; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Pelagos; Reproduction; Single species; Tropical; Zooplankton  (1)
  • Hydrodynamics  (1)
Collection
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Pecquet, Antoine; Dorey, Narimane; Chan, Kit Yu Karen (2017): Ocean acidification increases larval swimming speed and has limited effects on spawning and settlement of a robust fouling bryozoan, Bugula neritina. Marine Pollution Bulletin, 124(2), 903-910, https://doi.org/10.1016/j.marpolbul.2017.02.057
    Publication Date: 2023-05-12
    Description: Few studies to date have investigated the effects of ocean acidification on non-reef forming marine invertebrates with non-feeding larvae. Here, we exposed adults of the bryozoan Bugula neritina and their larvae to lowered pH. We monitored spawning, larval swimming, settlement, and post-settlement individual sizes at two pHs (7.9 vs. 7.6) and settlement dynamics alone over a broader pH range (8.0 down to 6.5). Our results show that spawning was not affected by adult exposure (48 h at pH 7.6), larvae swam 32% faster and the newly-settled individuals grew significantly larger (5%) at pH 7.6 than in the control. Although larvae required more time to settle when pH was lowered, reduced pH was not lethal, even down to pH 6.5. Overall, this fouling species appeared to be robust to acidification, and yet, indirect effects such as prolonging the pelagic larval duration could increase predation risk, and might negatively impact population dynamics.
    Keywords: Animalia; Behaviour; Bottles or small containers/Aquaria (〈20 L); Brackish waters; Bryozoa; Bugula neritina; Growth/Morphology; Laboratory experiment; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Pelagos; Reproduction; Single species; Tropical; Zooplankton
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Experimental Biology 219 (2016): 1303-1310, doi:10.1242/jeb.129502.
    Description: Many marine organisms have complex life histories, having sessile adults and relying on the planktonic larvae for dispersal. Larvae swim and disperse in a complex fluid environment and the effect of ambient flow on larval behavior could in turn impact their survival and transport. However, to date, most studies on larvae–flow interactions have focused on competent larvae near settlement. We examined the importance of flow on early larval stages by studying how local flow and ontogeny influence swimming behavior in pre-competent larval sea urchins, Arbacia punctulata. We exposed larval urchins to grid-stirred turbulence and recorded their behavior at two stages (4- and 6-armed plutei) in three turbulence regimes. Using particle image velocimetry to quantify and subtract local flow, we tested the hypothesis that larvae respond to turbulence by increasing swimming speed, and that the increase varies with ontogeny. Swimming speed increased with turbulence for both 4- and 6-armed larvae, but their responses differed in terms of vertical swimming velocity. 4-Armed larvae swam most strongly upward in the unforced flow regime, while 6-armed larvae swam most strongly upward in weakly forced flow. Increased turbulence intensity also decreased the relative time that larvae spent in their typical upright orientation. 6-Armed larvae were tilted more frequently in turbulence compared with 4-armed larvae. This observation suggests that as larvae increase in size and add pairs of arms, they are more likely to be passively re-oriented by moving water, rather than being stabilized (by mechanisms associated with increased mass), potentially leading to differential transport. The positive relationship between swimming speed and larval orientation angle suggests that there was also an active response to tilting in turbulence. Our results highlight the importance of turbulence to planktonic larvae, not just during settlement but also in earlier stages through morphology–flow interactions.
    Description: This work was supported by the National Science Foundation [OCE-0850419] and the National Oceanic and Atmospheric Administration Sea Grant [NA14OAR4170074]. K.Y.K.C. was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution (WHOI), with funding provided by the Coastal Ocean Institute, the Croucher Foundation and the Royal Swedish Academy of Sciences. K.Y.K.C. is currently funded by the Croucher Foundation. Additional funding was provided to L.S.M. through the WHOI Ocean Life Fellowship and discretionary WHOI funds, and to E.J.A. through the faculty sabbatical program at Grove City College.
    Keywords: Pluteus ; Behavior ; Hydrodynamics ; Particle image velocimetry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...