ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Formerly as: Berichte des Instituts für Meteorologie und Klimatologie der Technischen Universität Hannover  (1968–1978)
    Corporation: Institut für Meteorologie und Klimatologie 〈Hannover, Universität〉
    Print ISSN: 0440-2820
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: S 99. 0139 (336)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover
    Type of Medium: Series available for loan
    Pages: x, 117 Seiten , Illustrationen, Diagramme
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 336
    Language: German
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: S 99.0139(351)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 351
    Type of Medium: Series available for loan
    Pages: xxix, 177 Seiten , Illustrationen, Diagramme
    ISSN: 0174-1454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 351
    Language: English , German
    Note: Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, 2019 , Contents 1. Introduction 1.1. Motivations and background 1.2. Research hypotheses and aims 1.3. Outline of this work 2. Fundamentals and theory of seismic noise 2.1. Fundamentals of mechanical vibration 2.1.1. Theory of oscillation 2.1.1.1. Oscillation and waves 2.1.1.2. Standing waves and resonance 2.1.1.3. Types of noise 2.1.1.4. Signal-to-Noise Ratio 2.1.2. The oscillatory systems 2.1.2.1. Mass-Spring-Damper model 2.1.2.2. Equation of motion 2.1.2.3. Free damped oscillation 2.1.2.4. Forced damped oscillation 2.1.3. Modal analysis 2.1.3.1. Fourier transform 2.1.3.2. Windowing 2.1.3.3. Averaging and overlapping 2.1.4. Data evaluation 2.1.4.1. Presenting spectra and spectral densities 2.1.4.2. RMS value in the frequency domain 2.1.4.3. Transfer function 2.1.4.4. Spectrogram 2.2. Seismic noise sources 2.2.1. Natural sources 2.2.1.1. Geodynamical aspects 2.2.1.2. Geological aspects at Hamburg, DESY 2.2.2. Human-made sources 2.2.2.1. Impact by stationary objects 2.2.2.2. Impact by traffic on site, machines and human work 2.2.2.3. Technical devices in the laboratory 2.3. Methods of seismic isolation 2.3.1. Passive constructions 2.3.1.1. Principle of a simple pendulum 2.3.1.2. Principle of a spring pendulum 2.3.1.3. The inverted pendulum concept 2.3.1.4. The anti-spring concept 2.3.1.5. The harmonic oscillator as transfer function 2.3.2. Control theory 2.3.2.1. Simple controller 2.3.2.2. Feed-forward controller 2.3.2.3. Feedback controller 2.3.2.4. Combined controller 3. The Any Light Particle Search experiment 3.1. ALPS and its seismic noise requirements 3.1.1. The physics of ALPS 3.1.2. Optical resonators 3.1.3. Control loop design 3.1.4. Frequency region and absolute length requirements 3.1.5. Infrastructure and status 3.2. Tools and techniques used for seismicmeasurements, analyses, and isolations 3.2.1. Seismic measuring instruments 3.2.1.1. Seismometers 3.2.1.2. Acquisition devices 3.2.1.3. Selected measurement chain 3.2.2. Data management and analyses 3.2.2.1. Notations for documentation 3.2.2.2. Analysing procedure 3.2.3. Finite Element Method simulation 3.2.3.1. Simple isolation simulations 3.2.3.2. Over-determined isolation systems 3.2.3.3. Selected FEM tools 4. Seismic noise analysis 57 4.1. Method of frequency-weighted and averaged FFT 4.1.1. Problem definition and motivation 4.1.2. The solution approaches 4.1.2.1. Stitching 4.1.2.2. LPSD 4.1.2.3. New solution approach 4.1.3. The MfwaFFT algorithm 4.1.3.1. Data preparation 4.1.3.2. FFT generation 4.1.3.3. Windowing of the iteration steps 4.1.3.4. Weighting 4.1.3.5. Summing up 4.1.4. Advantages and disadvantages 4.1.5. Discussion in the field of geodesy 4.2. Measurement Preparation 4.2.1. Calibration of seismic devices 4.2.1.1. Single instruments 4.2.1.2. Cross-calibration 4.2.2. Accuracy analysis 4.2.2.1. Measuring device accuracy and precision 4.2.2.2. Digital uncertainties and errors 4.3. Seismic measurements on-site 4.3.1. On-site noise conditions (HERA) 4.3.1.1. ALPS IIa laboratory (HERA West) 4.3.1.2. ALPS IIc site (HERA North) 4.3.1.3. Reference (HERA South) 4.3.2. Optic-related components of the ALPS II experiment 4.3.2.1. Optical tables 4.3.2.2. CBB and mirror mountings 4.3.3. Associated noise sources 4.3.3.1. Dipole magnet girders 4.3.3.2. Filter Fan Units 4.4. Filtering of signal 4.4.1. Spatial transfer functions 4.4.2. Low-pass filter due to the cavity pole frequency 4.4.3. Filter by the control loop 4.5. Data evaluation 4.5.1. Specifications for the ALPS IIa isolation 4.5.2. Specifications for an ALPS IIc isolation 4.5.3. Specifications for a JURA isolation 5. Development of seismic isolation systems 5.1. Procedure for handling seismic noise and isolation problems 5.2. State-of-the-art seismic isolation concepts 5.2.1. The LIGO system 5.2.2. The VIRGO system 5.3. Development of a seismic isolation system 5.3.1. CAD draft of a test model 5.3.2. FEM simulations 5.3.3. Design drawing 5.3.4. Evaluation and validation 5.4. Seismic isolation concept for ALPS IIc and JURA 6. Conclusion 6.1. Summary 6.2. Outlook , Sprache der Zusammenfassungen: Englisch, Deutsch
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: S 99.0139(350)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 350
    Type of Medium: Series available for loan
    Pages: 130 Seiten , Illustrationen, Diagramme
    ISBN: 0174-1454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Universität Hannover Nr. 350
    Language: German
    Note: Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, 2019 , 1 Einleitung 2 Grundlagen 2.1 Entwicklung der Gravimeter 2.1.1 Funktionsprinzip Freifall-Absolutgravimeter 2.1.2 Stand der Technik Absolutgravimeter 2.1.3 Funktionsprinzip der Relativgravimeter 2.1.4 Relativgravimetrische Methoden 2.1.5 Anwendungen gravimetrischer Messungen 2.1.6 Abgrenzung klassischer gegenüber neuartiger Sensoren 2.1.7 Entwicklungen der Atominterferometer und Quantengravimeter 2.2 Zeitlich variable Schwereeffekte 2.2.1 Gezeiten 2.2.2 Atmosphäre 2.2.3 Polbewegung 2.2.4 Lokale Hydrologie 2.3 Methoden der Modellierung geometrischer Objekte 3 Kombination klassischer Instrumente und Quantensensoren 3.1 Die klassische Referenz: Untersuchung des FG5X-220 3.1.1 Umrüstung des FG5-220 auf das FG5X-220 3.1.2 Rückführung des FG5X-220 auf SI-Einheiten 3.1.3 Zur Genauigkeit des FG5X-220 3.2 State-of-the-Art Relativgravimeter 3.3 Charakterisierung von Quantengravimetern 3.3.1 Vergleichskampagnen in Berlin 3.3.2 Vergleichskampagne in Onsala 3.4 Anforderungen an Reduktionen neuartiger Sensoren 3.4.1 Verbesserte Atmosphärenmodellierung 3.4.2 Vergleich der ERA5 Lösung mit Atmacs 4 Modellierung beliebiger Körper 4.1 Erste Tests anhand Laborumgebungen 4.1.1 Gravimetermesskampagne 4.1.2 Modell der 200 kN Kraft-Normalmesseinrichtung 4.1.3 Vergleich Messung und Modell 4.1.4 Berechnung der Schwere innerhalb der Belastungskörper 4.2 Modellierung des VLBAI 4.2.1 Das Modell des HITec Gebäudes 4.2.2 Gravimetrische Messkampagne 4.2.3 Effekt der Ausstattung am Beispiel der optischen Tische 4.2.4 Beitrag der lokalen Hydrologie 4.2.5 Zusammenfassung der Modellierung im Umfeld des VLBAI 5 Zusammenfassung und Ausblick A Quantengravimeter: Ergänzungen A.1 Atominterferometer Sequenz A.2 Das Gravimetric Atom Interferometer B Absolutgravimetrie mit dem FG5X-220: Ergänzungen B.1 Geräteuntersuchungen B.1.1 Einfluss der Super Spring B.1.2 Bestimmung des Coriolis-Effekt B.2 Absolutgravimetervergleiche B.3 FG5X-220 Zeitreihen C Ergänzende Untersuchungen der Relativgravimeter C.1 Defekt am ZLS B-64 C.2 Kalibrierfaktoren der IfE Relativgravimeter C.3 ZLS B-114 D Arbeiten an der Physikalisch-Technischen Bundesanstalt D.1 Die 200 kN K-NME der PTB D.2 Koordinatensystem an der Kraft-Normalmesseinrichtung (K-NME) D.3 Absolutgravimetermessungen E Hannover Institut für Technologie E.1 Gravimetrische Messungen , Zusammenfassung in Deutsch und Englisch
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Call number: S 99.0139(365)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 365
    Type of Medium: Series available for loan
    Pages: 129 Seiten , Illustrationen, Diagramme
    ISBN: 978-3-7696-5270-3
    ISSN: 0174-1454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 365
    Language: German
    Note: 1. Einleitung 1.1. Motivation 1.2. Zielsetzung und Beitrag der Arbeit 1.2.1. Zielsetzung 1.2.2. Beitrag der Arbeit 1.3. Gliederung 2. Stand der Forschung 2.1. Bündelausgleichung 2.1.1. Zeilenkamera-Bilder 2.1.2. DGM als Passinformation 2.2. High Resolution Stereo Camera (HRSC) 2.2.1. Photogrammetrische Mars-Missionen 2.2.2. Mars Express 2.2.3. Entwicklung und Aufbau der Kamera 2.2.4. Verarbeitung der HRSC-Daten 3. Methodik 3.1. Mathematisches Modell der Bündelausgleichung 3.1.1. Funktionales Modell 3.1.2. Interpolation und Distanz zwischen den Orientierungspunkten 3.1.3. Stochastisches Modell 3.2. Systematische Bündelausgleichung der HRSC-Daten 3.2.1. Vorverarbeitung 3.2.2. Verknüpfungspunktbestimmung 3.2.3. Bündelausgleichung 3.2.4. Evaluierung der Orientierungsdaten 3.3. Zweistufige Bündelausgleichung von Zeilenkamera-Blöcken 3.3.1. Einzelstreifenausgleichung 3.3.2. Konzept der Blockbildung 3.3.3. Teilblock-Strategie zur Verknüpfungspunktbestimmung 3.3.4. Verknüpfungspunktfilter 3.3.5. Blockausgleichung 3.3.6. Stellgrößen des Verfahrens 4. Experimente und Ergebnisse 4.1. Ziele und Daten 4.1.1. Zielsetzung der Experimente 4.1.2. Verwendete HRSC-Daten 4.2. Einzelstreifenauswertung 4.2.1. Beispiel 4.2.2. Schwingungen in den Mars-Express-Orientierungsdaten 4.2.3. Globale Einzelstreifenausgleichung 4.3. Blockauswertungen 4.3.1. Beispiel 4.3.2. Untersuchungen zum Verknüpfungspunktfilter 4.3.3. Systematische Bündelausgleichung der MC-30-Blöcke 4.4. Diskussion der Ergebnisse 5. Fazit 5.1. Zusammenfassung und Schlussfolgerungen 5.2. Ausblick , Sprache der Zusammenfassungen: Deutsch, Englisch
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Call number: S 99.0139(364)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 364
    Type of Medium: Series available for loan
    Pages: XVI, 121 Seiten , Illustrationen, Diagramme
    ISBN: 978-3-7696-5268-0
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Universität Hannover Nr. 364
    Language: English
    Note: List of Figures List of Tables Acronyms 1 Introduction 1.1 Motivation 1.2 Objective and Outline 2 Fundamentals of Recursive State-space Filtering 2.1 Parameter Estimation 2.1.1 Gauss-Markov Model 2.1.2 Gauss-Helmert Model 2.1.3 Recursive Parameter Estimation 2.2 Recursive State-space Filtering 2.2.1 Iterated Extended Kalman Filter for Gauss-Markov Models 2.2.2 Iterated Extended Kalman Filter for Gauss-Helmert Models 2.3 State Constraints 2.3.1 Hard Constraints 2.3.2 Soft Constraints 2.3.3 Non-linear Constraints 3 Methodological Contributions 3.1 Versatile Recursive State-space Filter 3.2 Kalman Filtering with State Constraints for Gauss-Helmert Models 3.2.1 Implicit Pseudo Observations 3.2.2 Constrained Objective Function 3.2.3 Improvement of Implicit Contradictions 3.3 Recursive Gauss-Helmert Model 3.4 Example of Application 3.4.1 Monte-Carlo Simulation and Consistency 3.4.2 Results 3.4.3 Conclusions 4 Kinematic Multi-sensor Systems and Their Efficient Calibration 4.1 Kinematic Multi-sensor Systems 4.2 Calibration of Laser Scanner-based Multi-sensor Systems 4.2.1 Motivation 4.2.2 Experimental Setup 4.2.3 Classical Methods 4.2.4 Novel Recursive Calibration Approach 4.2.5 Comparison and Discussion 5 Information-based Georeferencing 5.1 Motivation 5.2 Experimental Setup 5.2.1 Kinematic Laser Scanner-based Multi-sensor Systems 5.2.2 Scenarios and Measuring Process 5.2.3 Additional Object Space Information 5.3 State of the Art Methods 5.4 Novel Information-based Georeferencing Approach 5.4.1 Basic Idea 5.4.2 Transformation of the Laser Scanner Observations 5.4.3 Assignment of the Laser Scanner Observations 5.4.4 Application of the Versatile Recursive State-space Filter 5.5 Comparison and Discussion 5.5.1 Mapping Within an Inner Courtyard 5.5.2 Georeferencing of an Autonomous Vehicle Within an Urban Canyon 5.5.3 Conclusions 6 Conclusions 6.1 Summary 6.2 Outlook A Appendix A.1 Pseudocode of the Versatile Recursive State-space Filter A.2 Analysis for the Selection of a Suitable Measurement and Process Noise Bibliography Acknowledgments CurriculumVitae , Zusammenfassung in englisch und deutsch Seite v-vii
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: S 99.0139(361)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 361
    Type of Medium: Series available for loan
    Pages: 108 Seiten , Illustrationen, Diagramme
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 361
    Language: English , German
    Note: 1 Introduction 1.1 Motivation 1.2 Problem Statement and Contributions 1.3 Structure 2 State-of-the-art 2.1 Integration of Object Knowledge in Image Space 2.2 Integration of Object Knowledge in Object Space 2.3 Discussion 3 Photogrammetric Pose Estimation with a Generalised Building Model 3.1 Overview 3.2 Hybrid Bundle Adjustment 3.2.1 Modelling Relations of Object Points to Model Planes 3.2.2 Functional Model 3.2.3 Stochastic Model 3.2.4 Robust Estimation 3.2.5 Determination of Initial Values 3.3 Workflow 3.3.1 Global Adjustment 3.3.2 Sliding Window Adjustment 4 Assignment Under Generalisation Effects 4.1 Generalisation Effects 4.2 Direct Assignment: Point-Plane-Matching 4.3 Indirect Assignment: Plane-Plane-Matching 4.3.1 Indirect Assignment without ROIs 4.3.2 Indirect Assignment with ROIs 4.4 Summary of the Assignment Parameters 5 Experiments 5.1 Setup of the experiments 5.1.1 Scenarios 5.1.2 Sequences 5.1.3 Evaluation 5.1.4 Structure of the Experiments 5.2 Dataset 5.2.1 Hardware 5.2.2 Data 5.3 Parameter Settings and Implementation 6 Results and Discussion 6.1 The Short Sequence: Generalisation & Systematic Effects 6.2 The Long Sequence: Generalisation & Systematic Effects, Block Deformations... 6.3 Check Point Errors versus Estimated Standard Deviations 6.4 Sliding Window versus Global Adjustment 6.5 Assignment Strategies 6.6 The Full Sequence 6.7 Parameter Variation 6.7.1 Fictitious Distance Observations of Tie Points 6.7.2 Maximum Distance of Tie Points to Model Planes 6.7.3 Estimation of Vertex Coordinates 6.7.4 Window Size Nws and Overlap AW 7 Conclusion and Outlook , Kurzfassungen in Deutscher und Englischer Sprache
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Call number: S 99.0139(363)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 363
    Type of Medium: Series available for loan
    Pages: 165 Seiten , Diagramme, Karten
    ISBN: 9783769652673
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Universität Hannover Nr. 363
    Language: English
    Note: 1 Introduction 1.1 Motivation and Research Questions 1.2 Objective Definition and Contributions 1.3 Outline of the Thesis 2 Theory and Related Work in Geodetic Network Analysis 2.1 Parameter Estimation in a Gauß - Markov Model 2.2 Parameter Estimation in a Gauß - Helmert Model 2.3 Geodetic Network Optimization: Theoretical Background and Related Work 2.3.1 Network Quality Criteria 2.3.2 Objective Functions and Optimality Criteria 2.3.3 Types of Optimization Problems 2.4 Discussion 3 Theoretical Background in Positioning and Navigation 3.1 Global Navigation Satellite Systems 3.1.1 GNSS Observables 3.1.2 GNSS positioning techniques 3.2 Inertial Navigation Systems 3.2.1 Coordinate Frames 3.2.2 Mechanization in the Navigation Frame 3.2.3 INS/GNSS Integration 3.3 Filtering Techniques 3.3.1 Bayes Filter 3.3.2 Kalman Filter 3.3.3 Linearized Kalman Filter 3.3.4 Extended Kalman Filter 3.4 Multi-Sensor Fusion 3.4.1 Laser Scanner 3.4.2 Stereo Cameras 3.4.3 Localization Versus Simultaneous Location and Mapping 4 State of the art in Collaborative Positioning 4.1 Introduction 4.2 Communication Architectures 4.3 Collaborative Positioning 4.3.1 GNSS Collaborative Positioning Approaches 4.3.2 Inertial Measurement Collaborative Positioning 4.3.3 Collaborative Positioning with Laser Scanner 4.3.4 Collaborative Positioning with Vision-Based Sensors 4.3.5 Collaborative Positioning Using Other Sensors 4.4 Simulation Technologies 4.4.1 Simulation Environments: Overview 4.4.2 Monte Carlo Methods 4.5 Discussion 5 Simulation Framework for Collaborative Scenarios 5.1 Design and Implementation 5.1.1 Vehicle Trajectories Simulator 5.1.2 Environmental Model 5.1.3 Measurement Generation 5.1.4 Collaborative-Extended Kalman Filter 5.1.5 Collaborative SLAM 5.1.6 Localization with Landmark Uncertainty 5.2 Application Example 5.2.1 Scenario and Setup 5.2.2 Sample Run 5.3 Discussion 6 Sensitivity Analysis of Dynamic Sensor Networks 6.1 Geodetic Network Optimization Problems for Dynamic Networks 6.2 Best Sensor Combination 6.2.1 Scenario and Sensor Setup 6.2.2 Sensitivity Results 6.3 Vehicle Dynamics Evaluation 6.3.1 Simulation Scenario and Setup 6.3.2 Process Noise Assessment 6.3.3 Process Noise to Measurement Noise Selection 6.4 Summary and Conclusions 7 Collaboration Versus Single Vehicle Estimation 7.1 Collaborative Navigation: Concept 7.2 Experiment Scenario and Setup 7.3 Collaboration Results 7.3.1 Accuracy and Precision Analysis 7.3.2 Integrity Analysis 7.4 Summary and Discussion 8 Conclusions 8.1 Summary 8.2 Outlook , Zusammenfassung in Englisch und Deutsch Seite i-iii
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Call number: S 99.0139(359)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 359
    Type of Medium: Series available for loan
    Pages: 134 Seiten , Diagramme, Karten
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 359
    Language: German , English
    Note: 1 Einleitung 1.1 Motivation 1.2 Zielsetzung 1.3 Gliederung 2 Verwandte Arbeiten 2.1 Grundbegriffe 2.1.1 Raumbezogene Objekte 2.1.2 Ähnlichkeit 2.1.3 Relation 2.1.4 Schema 2.2 Data-Matching 2.2.1 Klassifikation von Zuordnungsverfahren auf Objektebene 2.2.2 Herausforderungen bei der Objektzuordnung 2.2.3 Ausgewählte, merkmalsbasierte Verfahren 2.2.4 Ausgewählte, relationale Verfahren 2.3 Schema-Matching 2.3.1 Klassifikation von Zuordnungsverfahren auf Schemaebene 2.3.2 Herausforderungen bei der Zuordnung auf Schemaebene 2.3.3 Ausgewählte Schema-Matching-Verfahren im geographischen Kontext 3 Grundlagen 3.1 Ähnlichkeitsmaße 3.1.1 Geometrische Ähnlichkeit 3.1.2 Topologische Ähnlichkeit 3.1.3 Semantische Ähnlichkeit 3.2 Relationstypen 3.2.1 Relationen auf Objektebene 3.2.2 Relationen auf Schemaebene 3.3 Graphentheorie 3.3.1 Graph-Definitionen 3.3.2 Graph-Matching 3.3.3 Graph-Partitionierung / Graph-Cut 3.4 Ganzzahlige lineare Programmierung 4 Entwicklung von Data-Matching-Verfahren für verschiedene Objektgeometrien 4.1 Zuordnung von Polygonobjekten 4.1.1 Geometrischer Parameter 4.1.2 Heterogenitätsparameter 4.1.3 Erzeugung eines kombinierten Ergebnisses für das Schema-Matching 4.2 Zuordnung von unterschiedlichen Objektgeometrien 5 Entwicklung von Schema-Matching-Verfahren basierend auf Instanzdaten 5.1 Formale Problemdefinition 5.1.1 Synthetisches Beispiel 5.2 Einfache Lösungsverfahren 5.2.1 Beschränkung auf 1:1-Zuordnungen (Max-Match) 5.2.2 Beschränkung auf zwei Cluster (Min-Cut) 5.3 Einsatz von Heuristiken 5.4 Einsatz der ganzzahligen linearen Programmierung 5.4.1 Optimierungsziele und Bedingungen 5.4.2 Kombination von Optimierungszielen 5.4.3 Einführung einer festen Clustergröße (MaxScoreHardConstraintFixedSize) 5.4.4 Optimale Lösung ohne Nullcluster (MaxScoreHardConstraintFixedSizeNonEmpty) 5.4.5 Vereinfachtes Programm (MaxScoreHardConstraintFixedSizeUnique) 6 Experimente mit Realdaten und Untersuchungsergebnisse 6.1 Datenquellen und Datenvorverarbeitung 6.1.1 Datenquellen 6.1.2 Testgebiete 6.1.3 Datenvorverarbeitung 6.2 Ergebnisse des Data-Matching 6.2.1 Testgebiet A: ALKIS OSM in Hannover 6.2.2 Testgebiet B: ALKIS ATKIS in Hameln 6.2.3 Testgebiet C: ATKIS GDF in Hannover-Wedemark 6.2.4 Zusammenfassung der Data-Matching-Ergebnisse 6.3 Ergebnisse des Schema-Matching 6.3.1 Testgebiet B: ALKIS ATKIS in Hameln 6.3.2 Testgebiet A: ALKIS OSM in Hannover 6.3.3 Testgebiet C: ATKIS GDF in Hannover-Wedemark 6.3.4 Zusammenfassung aller Schema-Matching-Ergebnisse 7 Zusammenfassung und Ausblick , Kurzfassungen in Deutscher und Englischer Sprache
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Call number: S 99.0139(376)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover
    Type of Medium: Series available for loan
    Pages: 133 Seiten
    ISSN: 0174-1454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover 376
    Classification:
    Photogrammetry, Remote Sensing
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...