ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-03-18
    Description: Perception of depth is a fundamental challenge for the visual system, particularly for observers moving through their environment. The brain makes use of multiple visual cues to reconstruct the three-dimensional structure of a scene. One potent cue, motion parallax, frequently arises during translation of the observer because the images of objects at different distances move across the retina with different velocities. Human psychophysical studies have demonstrated that motion parallax can be a powerful depth cue, and motion parallax seems to be heavily exploited by animal species that lack highly developed binocular vision. However, little is known about the neural mechanisms that underlie this capacity. Here we show, by using a virtual-reality system to translate macaque monkeys (Macaca mulatta) while they viewed motion parallax displays that simulated objects at different depths, that many neurons in the middle temporal area (area MT) signal the sign of depth (near versus far) from motion parallax in the absence of other depth cues. To achieve this, neurons must combine visual motion with extra-retinal (non-visual) signals related to the animal's movement. Our findings suggest a new neural substrate for depth perception and demonstrate a robust interaction of visual and non-visual cues in area MT. Combined with previous studies that implicate area MT in depth perception based on binocular disparities, our results suggest that area MT contains a more general representation of three-dimensional space that makes use of multiple cues.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2422877/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2422877/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nadler, Jacob W -- Angelaki, Dora E -- DeAngelis, Gregory C -- R01 EY013644/EY/NEI NIH HHS/ -- R01 EY013644-07/EY/NEI NIH HHS/ -- R01 EY017866/EY/NEI NIH HHS/ -- R01 EY017866-02/EY/NEI NIH HHS/ -- England -- Nature. 2008 Apr 3;452(7187):642-5. doi: 10.1038/nature06814. Epub 2008 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18344979" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cues ; Depth Perception/*physiology ; Macaca/*physiology ; Male ; Motion Perception/*physiology ; Neurons/*physiology ; Photic Stimulation ; Retina/physiology ; Visual Cortex/*cytology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1993-11-05
    Description: Although presentation of antigen to the T cell receptor is necessary for the initiation of an immune response, additional molecules expressed on antigen-presenting cells deliver essential costimulatory signals. T cell activation, in the absence of costimulation, results in T cell anergy. The B7-1 protein is a costimulator molecule that regulates interleukin-2 (IL-2) secretion by signaling through the pathway that uses CD28 and CTLA-4 (hereafter referred to as the CD28 pathway). We have cloned a counter-receptor of CD28 and CTLA-4, termed B7-2. Although only 26 percent identical to B7-1, B7-2 also costimulates IL-2 production and T cell proliferation. Unlike B7-1, B7-2 messenger RNA is constitutively expressed in unstimulated B cells. It is likely that B7-2 provides a critical early costimulatory signal determining if the T cell will contribute to an immune response or become anergic.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freeman, G J -- Gribben, J G -- Boussiotis, V A -- Ng, J W -- Restivo, V A Jr -- Lombard, L A -- Gray, G S -- Nadler, L M -- CA 40216/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 5;262(5135):909-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematologic Malignancies, Dana-Farber Cancer Institute.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7694363" target="_blank"〉PubMed〈/a〉
    Keywords: Abatacept ; Amino Acid Sequence ; Animals ; *Antigens, CD ; Antigens, CD28/metabolism ; Antigens, CD80/chemistry/genetics/*immunology/metabolism ; Antigens, CD86 ; Antigens, Differentiation/*metabolism ; B-Lymphocytes/*immunology/metabolism ; CTLA-4 Antigen ; Cell Line ; *Cloning, Molecular ; DNA, Complementary/genetics ; Humans ; *Immunoconjugates ; *Lymphocyte Activation ; *Membrane Glycoproteins ; Molecular Sequence Data ; Sequence Alignment ; Signal Transduction ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1994-08-19
    Description: DNA sequences for the gene encoding mitochondrial cytochrome oxidase I in a group of rodents (pocket gophers) and their ectoparasites (chewing lice) provide evidence for cospeciation and reveal different rates of molecular evolution in the hosts and their parasites. The overall rate of nucleotide substitution (both silent and replacement changes) is approximately three times higher in lice, and the rate of synonymous substitution (based on analysis of fourfold degenerate sites) is approximately an order of magnitude greater in lice. The difference in synonymous substitution rate between lice and gophers correlates with a difference of similar magnitude in generation times.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hafner, M S -- Sudman, P D -- Villablanca, F X -- Spradling, T A -- Demastes, J W -- Nadler, S A -- New York, N.Y. -- Science. 1994 Aug 19;265(5175):1087-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Museum of Natural Science, Baton Rouge, LA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8066445" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Biological Evolution ; Electron Transport Complex IV/*genetics ; Host-Parasite Interactions ; Likelihood Functions ; Mitochondria/enzymology ; Molecular Sequence Data ; Mutation ; Phthiraptera/classification/enzymology/*genetics/physiology ; Phylogeny ; Rodentia/classification/*genetics/metabolism/*parasitology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1992-10-16
    Description: Deoxyspergualin (DSG) is a potent immunosuppressant whose mechanism of action remains unknown. To elucidate its mechanism of action, an intracellular DSG binding protein was identified. DSG has now been shown to bind specifically to Hsc70, the constitutive or cognate member of the heat shock protein 70 (Hsp70) protein family. The members of the Hsp70 family of heat shock proteins are important for many cellular processes, including immune responses, and this finding suggests that heat shock proteins may represent a class of immunosuppressant binding proteins, or immunophilins, distinct from the previously identified cis-trans proline isomerases. DSG may provide a tool for understanding the function of heat shock proteins in immunological processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nadler, S G -- Tepper, M A -- Schacter, B -- Mazzucco, C E -- New York, N.Y. -- Science. 1992 Oct 16;258(5081):484-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, CT 06492.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1411548" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Guanidines/*metabolism ; Heat-Shock Proteins/*metabolism ; Humans ; Immunosuppressive Agents/*metabolism ; Molecular Sequence Data ; Protein Binding ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...