ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alexandrium fundyense  (1)
  • Alexandrium minutum  (1)
  • Marine phytoplankton  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Blackwell, 2006. This is the author's version of the work. It is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Molecular Ecology Notes 6 (2006): 756-758, doi:10.1111/j.1471-8286.2006.01331.x.
    Description: Outbreaks of paralytic shellfish poisoning caused by the toxic dinoflagellate Alexandrium minutum (Dinophyceae) are a worldwide concern from both the economic and human health points of view. For population genetic studies of A. minutum distribution and dispersal, highly polymorphic genetic markers are of great value. We isolated 12 polymorphic microsatellites from this cosmopolitan, toxic dinoflagellate species. These loci provide one class of highly variable genetic markers, as the number of alleles ranged from 4 to 12, and the estimate of gene diversity was from 0.560 to 0.862 across the 12 microsatellites; these loci have the potential to reveal genetic structure and gene flow among A. minutum populations.
    Description: Support for this research provided in part (to DMA) by U.S. National Science Foundation grants OCE-0136861 and OCE-0430724, and the National Institute of Environmental Health Sciences Grant 1 P50 ES012742-01.
    Keywords: Alexandrium minutum ; Microsatellite ; Paralytic shellfish poisoning ; Phytoplankton ; SSR ; Toxic dinoflagellate
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 189512 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1997
    Description: Expression and regulation of the ferredoxin and flavodoxin proteins in marine phytoplankton were investigated to assess their utility as biomarkers of iron limitation. A phylogenetic survey of seventeen microalgal species showed flavodoxin induction, with accompanying ferredoxin repression, to be a common response to iron stress. A minority of organisms examined never expressed flavodoxin, a condition associated with, but not characteristic of, neritic habitats. Antibodies raised against ferredoxin and flavodoxin from Thalassiosira weissflogii proved to be mono- and diatom-specific, respectively. Flavodoxin induction responded specifically to iron limitation and not to nitrogen, phosphorus, silicate, zinc or light deficiency. In iron-limited T. weissflogii, relative cellular ferredoxin and flavodoxin content (Fd index) varied with growth rates above ~50%μmax and was not affected by growth on either nitrate or ammonium as a sole nitrogen source. Below ~50%μmax, ferredoxin was absent. This variation with severity of stress and specificity to iron limitation make the Fd index an excellent choice as an indicator of iron limitation. HPLC measurement of ferredoxin and flavodoxin during the IronExII mesoscale enrichment experiment detected a strong flavodoxin signal but no significant ferredoxin synthesis, despite increases in chlorophyll and photosynthetic efficiency (Fv/Fm) observed by others. The absence of ferredoxin and the persistence of flavodoxin suggested that iron addition released the phytoplankton from iron starvation but was insufficient to completely relieve physiological iron limitation. Laboratory experiments demonstrated that a pennate diatom clone isolated from the IronExII bloom expressed both flavodoxin and ferredoxin and could alter its protein expression in about one day, further supporting the conclusion of continued iron limitation during IronExII. During IronExII, Fd index was uniformly zero while Fv/Fm increased from 0.26 to 0.56. In contrast, a laboratory iron addition experiment showed little change in Fv/Fm when the Fd index increased from 0.5-0.9. A conceptual model of the covariation of Fv/Fm and Fd index describes a complementary relationship between the two measures. Model results suggest that photochemical systems are affected by iron limitation only after cellular adaptive capacity, in the form of ferredoxin, is exhausted.
    Description: This work was supported in part by a Department of Energy Graduate Fellowship for Global Change to D. Erdner and an Exploratory Research Agreement No. RP8021-05 from the Electric Power Research Institute to D.M. Anderson.
    Keywords: Ferredoxin-NADP reductase ; Marine phytoplankton ; Iron
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 62 (2017): 1742–1753, doi:10.1002/lno.10530.
    Description: While considerable effort has been devoted to understanding the factors regulating the development of phytoplankton blooms, the mechanisms leading to bloom decline and termination have received less attention. Grazing and sedimentation have been invoked as the main routes for the loss of phytoplankton biomass, and more recently, viral lysis, parasitism and programmed cell death (PCD) have been recognized as additional removal factors. Despite the importance of bloom declines to phytoplankton dynamics, the incidence and significance of various loss factors in regulating phytoplankton populations have not been widely characterized in natural blooms. To understand mechanisms controlling bloom decline, we studied two independent, inshore blooms of Alexandrium fundyense, paying special attention to cell mortality as a loss pathway. We observed increases in the number of dead cells with PCD features after the peak of both blooms, demonstrating a role for cell mortality in their terminations. In both blooms, sexual cyst formation appears to have been the dominant process leading to bloom termination, as both blooms were dominated by small-sized gamete cells near their peaks. Cell death and parasitism became more significant as sources of cell loss several days after the onset of bloom decline. Our findings show two distinct phases of bloom decline, characterized by sexual fusion as the initial dominant cell removal processes followed by elimination of remaining cells by cell death and parasitism.
    Description: This article is a result of research funded by the National Oceanic and Atmospheric Administration Center for Sponsored Coastal Ocean Research ECOHAB program under award no. NA09NOS4780166 to the University of Texas Marine Science Institute (D.L.E) and the Woods Hole Center for Oceans and Human Health by National Science Foundation (NSF) award no. OCE-1314642 and National Institute of Environmental Health Sciences (NIEHS) award no. 1-P01-ES021923-014 to D.M.A. and M.L B.
    Keywords: Phytoplankton bloom dynamics ; Harmful Algal Blooms (HABs) declines ; Phytoplankton mortality ; Programmed cell death (PCD) ; Life cycle transitions ; Alexandrium fundyense
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...