ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary concept to the final design. For the last few decades, we have pursued deterministic solutions of the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design methods. A single ray trace in such geometry requires 14 milliseconds and limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given.
    Keywords: Aerospace Medicine
    Type: Journal of radiation research (ISSN 0449-3060); Volume 43 Suppl; S87-91
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Parameterizations of single nucleon emission from the electromagnetic interactions of cosmic rays with nuclei are presented. These parameterizations are based upon the most accurate theoretical calculations available today. When coupled with Strong interaction parameterizations, they should be very suitable for use in cosmic ray propagation through intersteller space, the Earth's atmosphere, lunar samples, meteorites and spacecraft walls.
    Keywords: SPACE RADIATION
    Type: Photonuclear Absorption Cross Sections 22 p(SEE N89-29159 23-72); Photonuclear Absorpt
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-01-25
    Description: This report presents a brief history leading to the involvement of the Langley Research Center of the National Aeronautics and Space Administration (NASA) in space-radiation physics and protection. Indeed, a relatively complete summary of technical capability as of the summer of 1990 is given. The Boltzmann equations for coupled ionic and neutronic fields are presented and inversion techniques for the Boltzmann operator are discussed. Errors generated by the straight ahead approximation are derived and are shown to be negligible for most problems of space-radiation protection. A decoupling of projectile propagation from the target fields greatly simplifies the Boltzmann equations and allows an analytic solution of the target fragment transport. Analytic and numerical methods of solving the projectile transport equations are discussed. The nuclear physics underlying the coefficients in the Boltzmann equation is discussed. A coupled-channel optical model is found as a consequence of the loose binding of nuclear matter and closure of the nuclear states in high-energy reactions. Transport solutions with the developed data base are used with laboratory experiments to validate both the transport code and the data base. Numerical benchmarks and comparison with Monte Carlo calculations are also used for code validation.
    Keywords: SPACE RADIATION
    Type: ; : Spaceflight mechan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Parameterizations of single nucleon removal from electromagnetic and strong interactions of cosmic rays with nuclei are presented. These parameterizations are based upon the most accurate theoretical calculations available to date. They should be very suitable for use in cosmic ray propagation through interstellar space, the Earth's atmosphere, lunar samples, meteorites, spacecraft walls and lunar and martian habitats.
    Keywords: SPACE RADIATION
    Type: Electromagnetic Processes in Nucleus-Nucleus Collisions Relating to Space Radiation Research; 24 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: A review of the program in space radiation protection at the Langley Research Center is given. The relevant Boltzmann equations are given with a discussion of approximation procedures for space applications. The interaction coefficients are related to solution of the many-body Schroedinger equation with nuclear and electromagnetic forces. Various solution techniques are discussed to obtain relevant interaction cross sections with extensive comparison with experiments. Solution techniques for the Boltzmann equations are discussed in detail. Transport computer code validation is discussed through analytical benchmarking, comparison with other codes, comparison with laboratory experiments and measurements in space. Applications to lunar and Mars missions are discussed.
    Keywords: SPACE RADIATION
    Type: NASA-RP-1257 , L-16882 , NAS 1.61:1257
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: For extended manned space missions, the radiation shielding design requires efficient and accurate cosmic-ray transport codes that can handle the physics processes in detail. The Langley Research Center galactic cosmic-ray transport code (HZETRN) is currently under development for such design use. The cross sections for the production of secondary nucleons in the existing HZETRN code are energy dependent only for nucleon collisions. The approximation of energy-independent, heavy-ion fragmentation cross section is now removed by implementing a mathematically simplified energy-dependent stepping formalism for heavy ions. The cross section at each computational grid is obtained by linear interpolation from a few tabulated data to minimize computing time. Test runs were made for galactic cosmic-ray transport through a liquid hydrogen shield and a water shield at solar minimum. The results show no appreciable change in total fluxes or computing time compared with energy-independent calculations. Differences in high LET (linear energy transfer) spectra are noted, however, because of the large variation in cross sections at the low-energy region. The high LET components are significantly higher in the new code and have important implications on biological risk estimates for heavy-ion exposure.
    Keywords: SPACE RADIATION
    Type: NASA-TP-3243 , L-17103 , NAS 1.61:3243
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: Exposure to galactic cosmic rays (GCR) on long duration deep space missions presents a serious health risk to astronauts, with large uncertainties connected to the biological response. In order to reduce the uncertainties and gain understanding about the basic mechanisms through which space radiation initiates cancer and other endpoints, radiobiology experiments are performed. Some of the accelerator facilities supporting such experiments have matured to a point where simulating the broad range of particles and energies characteristic of the GCR environment in a single experiment is feasible from a technology, usage, and cost perspective. In this work, several aspects of simulating the GCR environment in the laboratory are discussed. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at the NASA Space Radiation Laboratory (NSRL) limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is within physical uncertainties, allowing a single reference field for deep space missions to be defined. Third, an approach for simulating the reference field at NSRL is presented. The approach allows for the linear energy transfer (LET) spectrum of the reference field to be approximately represented with discrete ion and energy beams and implicitly maintains a reasonably accurate charge spectrum (or, average quality factor). Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies. The neutron component and track structure characteristics of the proposed strategy are discussed in this context.
    Keywords: Aerospace Medicine; Space Radiation
    Type: NF1676L-19846 , Annual Space Radiation Investigators'' Workshop (2015 Space Rad IWS); Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: It is important that accurate estimates of crew exposure to radiation are obtained for future long-term space missions. Presently, several space radiation transport codes exist to predict the radiation environment, all of which take as input particle interaction cross sections that describe the nuclear interactions between the particles and the shielding material. The space radiation transport code HZETRN uses the nuclear fragmentation model NUCFRG2 to calculate Electromagnetic Dissociation (EMD) cross sections. Currently, NUCFRG2 employs energy independent branching ratios to calculate these cross sections. Using Weisskopf-Ewing (WE) theory to calculate branching ratios, however, is more advantageous than the method currently employed in NUCFRG2. The WE theory can calculate not only neutron and proton emission, as in the energy independent branching ratio formalism used in NUCFRG2, but also deuteron, triton, helion, and alpha particle emission. These particles can contribute significantly to total exposure estimates. In this work, photonuclear cross sections are calculated using WE theory and the energy independent branching ratios used in NUCFRG2 and then compared to experimental data. It is found that the WE theory gives comparable, but mainly better agreement with data than the energy independent branching ratio. Furthermore, EMD cross sections for single neutron, proton, and alpha particle removal are calculated using WE theory and an energy independent branching ratio used in NUCFRG2 and compared to experimental data.
    Keywords: Aerospace Medicine
    Type: NF1676L-10450
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Parameterizations of single nucleon removal from electromagnetic and strong interactions of cosmic rays with nuclei are presented. These parameterizations are based upon the most accurate theoretical calculations available to date. They should be very suitable for use in cosmic ray propagation through interstellar space, the Earth's atmosphere, lunar samples, meteorites, spacecraft walls and lunar and Martian habitats.
    Keywords: SPACE RADIATION
    Type: Astrophysical Journal Supplement Series (ISSN 0067-0049); 86; 1; p. 307-312.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The total proton-proton and neutron-proton cross sections currently used in the transport code HZETRN show significant disagreement with experiment in the GeV and EeV energy ranges. The GeV range is near the region of maximum cosmic ray intensity. It is therefore important to correct these cross sections, so that predictions of space radiation environments will be accurate. Parameterizations of nucleon-nucleon total cross sections are developed which are accurate over the entire energy range of the cosmic ray spectrum.
    Keywords: Nuclear Physics
    Type: NASA/TP-2008-215116 , L-19396
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...