ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-10-28
    Description: Brain development and function depend on the precise regulation of gene expression. However, our understanding of the complexity and dynamics of the transcriptome of the human brain is incomplete. Here we report the generation and analysis of exon-level transcriptome and associated genotyping data, representing males and females of different ethnicities, from multiple brain regions and neocortical areas of developing and adult post-mortem human brains. We found that 86 per cent of the genes analysed were expressed, and that 90 per cent of these were differentially regulated at the whole-transcript or exon level across brain regions and/or time. The majority of these spatio-temporal differences were detected before birth, with subsequent increases in the similarity among regional transcriptomes. The transcriptome is organized into distinct co-expression networks, and shows sex-biased gene expression and exon usage. We also profiled trajectories of genes associated with neurobiological categories and diseases, and identified associations between single nucleotide polymorphisms and gene expression. This study provides a comprehensive data set on the human brain transcriptome and insights into the transcriptional foundations of human neurodevelopment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566780/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566780/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Hyo Jung -- Kawasawa, Yuka Imamura -- Cheng, Feng -- Zhu, Ying -- Xu, Xuming -- Li, Mingfeng -- Sousa, Andre M M -- Pletikos, Mihovil -- Meyer, Kyle A -- Sedmak, Goran -- Guennel, Tobias -- Shin, Yurae -- Johnson, Matthew B -- Krsnik, Zeljka -- Mayer, Simone -- Fertuzinhos, Sofia -- Umlauf, Sheila -- Lisgo, Steven N -- Vortmeyer, Alexander -- Weinberger, Daniel R -- Mane, Shrikant -- Hyde, Thomas M -- Huttner, Anita -- Reimers, Mark -- Kleinman, Joel E -- Sestan, Nenad -- DA026119/DA/NIDA NIH HHS/ -- G0700089/Medical Research Council/United Kingdom -- G9900837/Medical Research Council/United Kingdom -- GR082557/Wellcome Trust/United Kingdom -- HD000836/HD/NICHD NIH HHS/ -- MH081896/MH/NIMH NIH HHS/ -- MH089929/MH/NIMH NIH HHS/ -- NS054273/NS/NINDS NIH HHS/ -- R01 NS054273/NS/NINDS NIH HHS/ -- R01 NS054273-07/NS/NINDS NIH HHS/ -- RC2 MH089929/MH/NIMH NIH HHS/ -- RC2 MH089929-02/MH/NIMH NIH HHS/ -- U01 MH081896/MH/NIMH NIH HHS/ -- U01 MH081896-03/MH/NIMH NIH HHS/ -- England -- Nature. 2011 Oct 26;478(7370):483-9. doi: 10.1038/nature10523.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22031440" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Aged ; Aged, 80 and over ; Aging/*genetics ; Brain/embryology/*growth & development/*metabolism ; Child ; Child, Preschool ; Exons/genetics ; Female ; Fetus/metabolism ; *Gene Expression Profiling ; Gene Expression Regulation, Developmental/*genetics ; Gene Regulatory Networks/genetics ; Humans ; Infant ; Male ; Middle Aged ; Quality Control ; Quantitative Trait Loci/genetics ; Sex Characteristics ; Time Factors ; Transcriptome/*genetics ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1983-09-23
    Description: Sodium fluoride, guanylimidodiphosphate, and the D1 dopamine receptor agonist SKF 38393 elicited a greater activation of adenylate cyclase in homogenates of caudate nucleus in schizophrenic than in nonschizophrenic subjects used as controls. Similarly, a greater activation of adenylate cyclase by sodium fluoride was observed in the nucleus accumbens of schizophrenics. These findings suggest that the coupling of dopamine D1 recognition sites with adenylate cyclase is more efficient in the brain of the schizophrenic, presumably because of an increased affinity of the G/F protein for guanosine 5'-triphosphate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Memo, M -- Kleinman, J E -- Hanbauer, I -- MH/NS 31862/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1983 Sep 23;221(4617):1304-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6310753" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/*metabolism ; Caudate Nucleus/*metabolism ; Enzyme Activation/drug effects ; Fluorides/pharmacology ; GTP-Binding Proteins ; Guanylyl Imidodiphosphate/pharmacology ; Humans ; Membrane Proteins/metabolism ; Nucleus Accumbens/*metabolism ; Receptors, Cell Surface/*physiology ; Receptors, Dopamine/*physiology ; Schizophrenia/*metabolism ; Septal Nuclei/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...