ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Active site residues  (1)
  • G-protein-coupled receptor  (1)
  • H1-antagonists  (1)
  • 1
    ISSN: 1573-4951
    Keywords: Histamine ; H1-receptor ; H1-agonists ; H1-antagonists ; G-protein coupled receptor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary A modelling study has been carried out, investigating the binding of histamine (Hist), 2-methylhistamine (2-MeHist) and 2-phenylhistamine (2-PhHist) at two postulated agonistic binding sites on transmembrane domain 5 (TM5) of the histamine H1-receptor. For this purpose a conformational analysis study was performed on three particular residues of TM5, i.e., Lys200, Thr203 and Asn207, for which a functional role in binding has been proposed. The most favourable results were obtained for the interaction between Hist and the Lys200/Asn207 pair. Therefore, Lys200 was subsequently mutated and converted to an alanine, resulting in a 50-fold decrease of H1-receptor stimulation by histamine. Altogether, the data suggest that the Lys200/Asn207 pair is important for activation of the H1-receptor by histamine. In contrast, analogues of 2-PhHist seem to belong to a distinct subclass of histamine agonists and an alternative mode of binding is proposed in which the 2-phenyl ring binds to the same receptor location as one of the aromatic rings of classical histamine H1-antagonists. Subsequently, the binding modes of the agonists Hist, 2-MeHist and 2-PhHist and the H1-antagonist cyproheptadine were evaluated in three different seven-α-helical models of the H1-receptor built in homology with bacteriorhodopsin, but using three different alignments. Our findings suggest that the position of the carboxylate group of Asp116 (TM3) within the receptor pocket depends on whether an agonist or an antagonist binds to the protein; a conformational change of this aspartate residue upon agonist binding is expected to play an essential role in receptor stimulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4951
    Keywords: Cytochromes P450 ; P450 2D6 ; P450 101 ; 3D model ; Active site residues ; Homology building
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary A homology model building study of cytochrome P450 2D6 has been carried out based on the crystal structure of cytochrome P450 101. The primary sequences of P450 101 and P450 2D6 were aligned by making use of an automated alignment procedure. This alignment was adjusted manually by matching α-helices (C, D, G, I, J, K and L) and β-sheets (β3/β4) of P450 101 that are proposed to be conserved in membrane-bound P450s (Ouzounis and Melvin [Eur. J. Biochem., 198 (1991) 307]) to the corresponding regions in the primary amino acid sequence of P450 2D6. Furthermore, α-helices B, B′ and F were found to be conserved in P450 2D6. No significant homology between the remaining regions of P450 101 and P450 2D6 could be found and these regions were therefore deleted. A 3D model of P450 2D6 was constructed by copying the coordinates of the residues from the crystal structure of P450 101 to the corresponding residues in P450 2D6. The regions without a significant homology with P450 101 were not incorporated into the model. After energy-minimization of the resulting 3D model of P450 2D6, possible active site residues were identified by fitting the substrates debrisoquine and dextrometorphan into the proposed active site. Both substrates could be positioned into a planar pocket near the heme region formed by residues Val370, Pro371, Leu372, Trp316, and part of the oxygen binding site of P450 2D6. Furthermore, the carboxylate group of either Asp100 or Asp301 was identified as a possible candidate for the proposed interaction with basic nitrogen atom(s) of the substrates. These findings are in accordance with a recently published predictive model for substrates of P450 2D6 [Koymans et al., Chem. Res. Toxicol., 5 (1992) 211].
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-4951
    Keywords: G-protein-coupled receptor ; Hartree-Fock calculations ; Histamine H2 receptor ; Molecular mechanics ; Receptor models
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary In the first part (pp. 461–478 in this issue) of this study regarding the histamine H2 receptor agonistic binding site, the best possible interactions of histamine with an α-helical oligopeptide, mimicking a part of the fifth transmembrane α-helical domain (TM5) of the histamine H2 receptor, were considered. It was established that histamine can only bind via two H-bonds with a pure α-helical TM5, when the binding site consists of Tyr182/Asp186 and not of the Asp186/Thr190 couple. In this second part, two particular three-dimensional models of G-protein-coupled receptors previously reported in the literature are compared in relation to agonist binding at the histamine H2 receptor. The differences between these two receptor models are discussed in relation to the general benefits and limitations of such receptor models. Also the pros and cons of simplifying receptor models to a relatively easy-to-deal-with oligopeptide for mimicking agonistic binding to an agonistic binding site are addressed. Within complete receptor models, the simultaneous interaction of histamine with both TM3 and TM5 can be analysed. The earlier suggested three-point interaction of histamine with the histamine H2 receptor can be explored. Our results demonstrate that a three-point interaction cannot be established for the Asp98/Asp186/Thr190 binding site in either of the investigated receptor models, whereas histamine can form three H-bonds in case the agonistic binding site is constituted by the Asp98/Tyr182/Asp186 triplet. Furthermore this latter triplet is seen to be able to accommodate a series of substituted histamine analogues with known histamine H2 agonistic activity as well.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...