Skip to main content
Log in

Modelling and mutation studies on the histamine H1-receptor agonist binding site reveal different binding modes for H1-agonists: Asp116 (TM3) has a constitutive role in receptor stimulation

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

A modelling study has been carried out, investigating the binding of histamine (Hist), 2-methylhistamine (2-MeHist) and 2-phenylhistamine (2-PhHist) at two postulated agonistic binding sites on transmembrane domain 5 (TM5) of the histamine H1-receptor. For this purpose a conformational analysis study was performed on three particular residues of TM5, i.e., Lys200, Thr203 and Asn207, for which a functional role in binding has been proposed. The most favourable results were obtained for the interaction between Hist and the Lys200/Asn207 pair. Therefore, Lys200 was subsequently mutated and converted to an alanine, resulting in a 50-fold decrease of H1-receptor stimulation by histamine. Altogether, the data suggest that the Lys200/Asn207 pair is important for activation of the H1-receptor by histamine. In contrast, analogues of 2-PhHist seem to belong to a distinct subclass of histamine agonists and an alternative mode of binding is proposed in which the 2-phenyl ring binds to the same receptor location as one of the aromatic rings of classical histamine H1-antagonists. Subsequently, the binding modes of the agonists Hist, 2-MeHist and 2-PhHist and the H1-antagonist cyproheptadine were evaluated in three different seven-α-helical models of the H1-receptor built in homology with bacteriorhodopsin, but using three different alignments. Our findings suggest that the position of the carboxylate group of Asp116 (TM3) within the receptor pocket depends on whether an agonist or an antagonist binds to the protein; a conformational change of this aspartate residue upon agonist binding is expected to play an essential role in receptor stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2-MeHist:

2-methylhistamine

2-PEA:

2-pyridyl-ethylamine

2-PhHist:

2-phenylhistamine

CHO:

Chinese hamster ovary

Eint :

interaction energy

Estr :

strain energy

GES:

global energy structure

gpH1R:

guinea pig H1-receptor

GPCR:

G-protein coupled receptor

Hist:

histamine

Nπ :

proximal nitrogen

Nτ :

tele nitrogen

TM:

transmembrane domain

WT:

wild type

References

  1. Cooper, D.G., Young, R.C., Durant, G.J. and Ganellin, C.R., In Hansch, C., Sammes, P.G. and Taylor, J.B. (Eds) Comprehensive Medicinal Chemistry, Pergamon Press, Oxford, 1990.

    Google Scholar 

  2. Koper, J.G., Van derVliet, A., Van derGoot, H. and Timmerman, H., Pharm. Weekbl., 12 (1990) 236.

    Google Scholar 

  3. Zingel, V., Elz, S. and Schunack, W., Eur. J. Med. Chem., 25 (1990) 673.

    Google Scholar 

  4. Zingel, V. and Schunack, W., Pharmazie, 48 (1993) 483.

    Google Scholar 

  5. Leurs, R., Smit, M.J., TerLaak, A.M. and Timmerman, H., Biochem. Biophys. Res. Commun., 201 (1994) 295.

    Google Scholar 

  6. Traiffort, E., Leurs, R., Arrang, J.M., Tardivel-Lacombe, J., Diaz, J., Schwartz, J.-C. and Ruat, M., J. Neurochem., 62 (1994) 507.

    Google Scholar 

  7. Ohta, K., Hayashi, H., Mizuguchi, H., Kagamiyama, H., Fujimoto, K. and Fukui, H., Biochem. Biophys. Res. Commun., 203 (1994) 1096.

    Google Scholar 

  8. Strader, C.D., Candelore, M.R., Hill, W.S., Sigal, I.S. and Dixon, R.A.F., J. Biol. Chem., 264 (1989) 13572.

    Google Scholar 

  9. Gantz, I., DelValle, J., Wang, L., Tashiro, T., Munzert, G., Guo, Y., Konda, Y. and Yamada, T., J. Biol. Chem., 267 (1992) 20840.

    Google Scholar 

  10. Henderson, R., Baldwin, J., Ceska, T.H., Zemlin, F., Beckmann, E. and Downing, K., J. Mol. Biol., 213 (1990) 899.

    Google Scholar 

  11. Hibert, M.F., Trumpp-Kallmeyer, S., Bruinvels, A. and Hoflack, J. Mol. Pharmacol., 40 (1991) 8.

    Google Scholar 

  12. Trumpp-Kallmeyer, S., Hoflack, J., Bruinvels, A. and Hibert, M.F., J. Med. Chem., 35 (1992) 3448.

    Google Scholar 

  13. Lewell, X.Q., Drug Des. Discov., 9 (1992) 29.

    Google Scholar 

  14. IJzerman, A.P., VanGalen, P.J.M. and Jacobsen, K.A., Drug Des. Discov., 9 (1992) 49.

    Google Scholar 

  15. Pardo, L., Ballesteros, J.A., Osman, R. and Weinstein, H., Proc. Natl. Acad. Sci. USA, 89 (1992) 4009.

    Google Scholar 

  16. Timms, D., Wilkinson, A.J., Kelly, D.R., Broadley, K.J. and Davies, R.H., Int. J. Quant. Chem., Quant. Biol. Symp., 19 (1992) 197.

    Google Scholar 

  17. Cronet, P., Sander, C. and Vriend, G., Protein Eng., 6 (1993) 59.

    Google Scholar 

  18. Oliveira, L., Paiva, A.C.M. and Vriend, G., 7TM, 1 (1993) 13.

    Google Scholar 

  19. Ter Laak, A.M., Venhorst, J., Donné-Op den Kelder, G.M. and Timmerman, H., J. Med. Chem., (1995) in press.

  20. Ippolito, J.A., Alexander, R.S. and Christianson, D.W., J. Biol. Chem., 215 (1990) 457.

    Google Scholar 

  21. Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., J. Comput. Chem., 7 (1986) 230.

    Google Scholar 

  22. ChemX Reference Guide, Chemical Design Ltd., Oxon, July 1993.

  23. Schertler, G.F.X., Villa, C. and Henderson, R., Nature, 362 (1993) 770.

    Google Scholar 

  24. Hunter, C.A., Singh, J. and Thornton, J.M., J. Mol. Biol., 218 (1991) 837.

    Google Scholar 

  25. Weinstein, H., In Bonati, L., Cosentino, U., Lasagni, M., Moro, G., Pitea, D. and Schiraldi, A. (Eds) Molecular Mechanics in Ecological Physical Chemistry, Elsevier, Amsterdam, 1993, pp. 1–16.

    Google Scholar 

  26. Oliveira, L., Paiva, A.C.M., Sander, C. and Vriend, G., Trends Pharmacol. Sci., 15 (1994) 170.

    Google Scholar 

  27. Timms, D., Wilkinson, A.J., Kelly, D.R., Broadley, K.J. and Davies, R.H., Recept. Channels, 2 (1994) 107.

    Google Scholar 

  28. Donné-Op den Kelder, G.M., Nederkoorn, P. and Timmerman, H., In Trends in QSAR and Molecular Modelling 94 (Proceedings of the 10th European Symposium on Structure-Activity Relationships), J.R. Prous, S.A., 1994, in press.

  29. Nederkoorn, P., Donné-Op den Kelder, G.M. and Timmerman, H., Trends Pharmacol. Sci., 16 (1995) 156.

    Google Scholar 

  30. Leurs, R., Smit, M.J., Meeder, R., Ter Laak, A.M. and Timmerman, H., Biochem. Biophys. Res. Commun., (1995) in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ter Laak, A.M., Timmerman, H., Leurs, R. et al. Modelling and mutation studies on the histamine H1-receptor agonist binding site reveal different binding modes for H1-agonists: Asp116 (TM3) has a constitutive role in receptor stimulation. J Computer-Aided Mol Des 9, 319–330 (1995). https://doi.org/10.1007/BF00125173

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00125173

Keywords

Navigation