ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ASTRONAUTICS (GENERAL)  (4)
  • Sediment trapping
Collection
Keywords
Years
  • 1
    Publication Date: 2019-06-28
    Description: Substantiating data developed by a NASA-industry team (NIT) for subsequent NASA decisions on the 'right' set of manned transportation elements needed for human access to space are discussed. Attention is given to the framework for detailed definition of these manned transportation elements. Identifying and defining architecture evaluation criteria, i.e., attributes, specified the amount and type of data needed for each concept under consideration. Several architectures, each beginning with today's transportation systems, were defined using representative systems to explore future options and address specific questions currently being debated. The present solutions emphasize affordability, safety, routineness, and reliability. Key issues associated with current business practices were challenged and the impact associated with these practices quantified.
    Keywords: ASTRONAUTICS (GENERAL)
    Type: AIAA PAPER 92-1701
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Recent work completed by a NASA-Industry Team designed to identify the requirements for the U.S. manned transportation system (MTS) is presented. This MTS study was designed to address important outstanding issues concerning present systems and what the configuration and capabilities of a new manned vehicle should be. The rigorous process developed is measurable and repeatable and helps define a coherent and integrated strategy for which space launch vehicle concepts can be defined for future manned transportation to space.
    Keywords: ASTRONAUTICS (GENERAL)
    Type: IAF PAPER 92-0853
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: Attention is given to the Manned Transportation System (MTS) Study, initiated to help identify the 'right' transportation system architectures needed for human access to space. A listing of the requirements used for this study and the rationale behind them are given. Attributes allow comparison of elements that meet the requirements and the 'needs' (mission model). The attributes include: safety, probability of mission success, funding profile, architecture cost risk, schedule confidence, dependability, availability, mission growth potential, environment, resiliency, and alternate access. The attributes need to be measurable, to have repeatable calculations and well-defined assumptions, to have their weight determined relative to other attributes, and to be a discriminator. The process used to determine the attributes, which involved the MTS team forum and some of the quality function deployment techniques, is discussed.
    Keywords: ASTRONAUTICS (GENERAL)
    Type: AIAA PAPER 92-1703
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: The Manned Transportation System (MTS) Study has constructed a comprehensive set of transportation architectures, using current and possible vehicle systems to address specifically a series of considerations which focus and guide what the future transportation architectures should be. Payload manifesting ground rules are presented to illustrate the present approach in establishing flight rates from the MTS mission models. Manned system flight rates and relative personnel safety characteristics differences are presented.
    Keywords: ASTRONAUTICS (GENERAL)
    Type: AIAA PAPER 92-1704
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Continental Shelf Research 60, Suppl. (2013): S40–S57, doi:10.1016/j.csr.2012.02.004.
    Description: Tidal flats at a river mouth feature estuarine and fluvial processes that distinguish them from tidal flats without river discharge. We combine field observations and a numerical model to investigate hydrodynamics and sediment transport on deltaic tidal flats at the mouth of the Skagit River, in Puget Sound, WA during the spring freshet. River discharge over tidal flats supplies a mean volume flux, freshwater buoyancy, and suspended sediment. Despite the shallow water depths, strong horizontal density fronts and stratification develop, resulting in a baroclinic pressure gradient and tidal variability in stratification that favor flood-directed bottom stresses. In addition to these estuarine processes, the river discharge during periods of low tide drains through a network of distributary channels on the exposed tidal flats, with strongly ebb-directed stresses. The net sediment transport depends on the balance between estuarine and fluvial processes, and is modulated on a spring-neap time scale by the tides of Puget Sound. We find that the baroclinic pressure gradient and periodic stratification enhance trapping of sediment delivered by the river on the tidal flats, particularly during neap tides, and that sediment trapping also depends on settling and scour lags, particularly for finer particles. The primary means of moving sediment off of the tidal flats are the high velocities and stresses in the distributary channels during late stages of ebbs and around low tides, with sediment export predominantly occurring during spring low tides that expose a greater portion of the flats. The 3-d finite volume numerical model was evaluated against observations and had good skill overall, particularly for velocity and salinity. The model performed poorly at simulating the shallow flows around low tides as the flats drained and river discharge was confined to distributary channels, due in part to limitations in grid resolution, seabed sediment and bathymetric data, and the wetting-and-drying scheme. Consequently, the model predicted greater sediment retention on the flats than was observed.
    Description: This work was supported by the Office of Naval Research.
    Keywords: Tidal flats ; Sediment transport ; Sediment trapping ; Distributary channels ; Stratification ; Salinity fronts ; Tidal asymmetry ; Velocity skewness ; Numerical model
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C10013, doi:10.1029/2012JC008124.
    Description: Analyses of field observations and numerical model results have identified that sediment transport in the Hudson River estuary is laterally segregated between channel and shoals, features frontal trapping at multiple locations along the estuary, and varies significantly over the spring-neap tidal cycle. Lateral gradients in depth, and therefore baroclinic pressure gradient and stratification, control the lateral distribution of sediment transport. Within the saline estuary, sediment fluxes are strongly landward in the channel and seaward on the shoals. At multiple locations, bottom salinity fronts form at bathymetric transitions in width or depth. Sediment convergences near the fronts create local maxima in suspended-sediment concentration and deposition, providing a general mechanism for creation of secondary estuarine turbidity maxima at bathymetric transitions. The lateral bathymetry also affects the spring-neap cycle of sediment suspension and deposition. In regions with broad, shallow shoals, the shoals are erosional and the channel is depositional during neap tides, with the opposite pattern during spring tides. Narrower, deeper shoals are depositional during neaps and erosional during springs. In each case, the lateral transfer is from regions of higher to lower bed stress, and depends on the elevation of the pycnocline relative to the bed. Collectively, the results indicate that lateral and along-channel gradients in bathymetry and thus stratification, bed stress, and sediment flux lead to an unsteady, heterogeneous distribution of sediment transport and trapping along the estuary rather than trapping solely at a turbidity maximum at the limit of the salinity intrusion.
    Description: This research was funded by a grant from the Hudson River Foundation (#002/07A). D.R. was partially supported by the Office of Naval Research (N00014-08-1-0846).
    Description: 2013-04-17
    Keywords: Estuarine turbidity maximum ; Lateral sediment distribution ; Salinity fronts ; Sediment flux ; Sediment trapping ; Stratification
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C10040, doi:10.1029/2010JC006248.
    Description: A 3-D hydrodynamic model is used to investigate how different size classes of river-derived sediment are transported, exported and trapped on an idealized, river-dominated tidal flat. The model is composed of a river channel flanked by sloping tidal flats, a configuration motivated by the intertidal region of the Skagit River mouth in Washington State, United States. It is forced by mixed tides and a pulse of freshwater and sediment with various settling velocities. In this system, the river not only influences stratification but also contributes a significant cross-shore transport. As a result, the bottom stress is strongly ebb-dominated in the channel because of the seaward advance of strong river flow as the tidal flats drain during ebbs. Sediment deposition patterns and mass budgets are sensitive to settling velocity. The lateral sediment spreading scales with an advective distance (settling time multiplied by lateral flow speed), thereby confining the fast settling sediment classes in the channel. Residual sediment transport is landward on the flats, because of settling lag, but is strongly seaward in the channel. The seaward transport mainly occurs during big ebbs and is controlled by a length scale ratio Ld/XWL, where Ld is a cross-shore advective distance (settling time multiplied by river outlet velocity), and XWL is the immersed cross-shore length of the intertidal zone. Sediment trapping requires Ld/XWL 〈 1, leading to more trapping for the faster settling classes. Sensitivity studies show that including stratification and reducing tidal range both favor sediment trapping, whereas varying channel geometries and asymmetry of tides has relatively small impacts. Implications of the modeling results on the south Skagit intertidal region are discussed.
    Description: SNC is supported by a WHOI/USGS postdoctoral scholarship. The field program on the Skagit intertidal region is supported by an ONR grant N00014-08-1-0790.
    Keywords: Sediment trapping ; Tidal flat
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 40 (2013): 5451–5455, doi:10.1002/2013GL057906.
    Description: Tropical Storms Irene and Lee in 2011 produced intense precipitation and flooding in the U.S. Northeast, including the Hudson River watershed. Sediment input to the Hudson River was approximately 2.7 megaton, about 5 times the long-term annual average. Rather than the common assumption that sediment is predominantly trapped in the estuary, observations and model results indicate that approximately two thirds of the new sediment remained trapped in the tidal freshwater river more than 1 month after the storms and only about one fifth of the new sediment reached the saline estuary. High sediment concentrations were observed in the estuary, but the model results suggest that this was predominantly due to remobilization of bed sediment. Spatially localized deposits of new and remobilized sediment were consistent with longer term depositional records. The results indicate that tidal rivers can intercept (at least temporarily) delivery of terrigenous sediment to the marine environment during major flow events.
    Description: This research was supported by grants from the Hudson Research Foundation (002/07A) and the National Science Foundation (1232928).
    Description: 2014-04-18
    Keywords: Sediment transport ; Tidal river ; Estuary ; Sediment trapping
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Format: image/tiff
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...