ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (21)
  • BIOACID; Biological Impacts of Ocean Acidification  (18)
  • ANT-XVIII/2; CT; DATE/TIME; EisenEx; European Iron Enrichment Experiment in the Southern Ocean; LATITUDE; LONGITUDE; PAR sensor LI-192SA, LI-COR Inc.; Polarstern; PS58/2-track; PS58 EISENEX; Short-wave downward (GLOBAL) radiation, daily sum; Time in hours; Time of day; Underway cruise track measurements  (1)
  • ANT-XVIII/2; Calculated; Chlorophyll a; CT; DATE/TIME; DEPTH, water; EisenEx; European Iron Enrichment Experiment in the Southern Ocean; Fluorometry; JGOFS; Joint Global Ocean Flux Study; LATITUDE; LONGITUDE; Phaeopigments; Polarstern; PS58_transect07; PS58 EISENEX; Underway cruise track measurements  (1)
  • ANT-XVIII/2; Calculated; Comment; CTD/Rosette; CTD101; CTD103; CTD104; CTD105; CTD107; CTD108; CTD109; CTD110; CTD111; CTD112; CTD117; CTD118; CTD119; CTD123; CTD125; CTD127; CTD128; CTD129; CTD130; CTD132; CTD133; CTD134; CTD135; CTD136; CTD137; CTD138; CTD139; CTD140; CTD145; CTD146; CTD147; CTD148; CTD150; CTD16; CTD17; CTD20; CTD22; CTD23; CTD24; CTD25; CTD40; CTD42; CTD46; CTD51; CTD53; CTD54; CTD55; CTD56; CTD57; CTD60; CTD61; CTD62; CTD63; CTD64; CTD65; CTD66; CTD69; CTD70; CTD73; CTD74; CTD75; CTD76; CTD81; CTD87; CTD9; CTD93; CTD94; CTD95; CTD96; CTD97; CTD98; CTD99; CTD-RO; Date/Time of event; DEPTH, water; Depth of the euphotic zone; Diffuse attenuation coefficient, downward; Diffuse attenuation coefficient, downward, standard deviation; EisenEx; European Iron Enrichment Experiment in the Southern Ocean; Event label; Latitude of event; Longitude of event; MULT; Multiple investigations; Polarstern; PS58/009-2; PS58/011-3; PS58/012-5; PS58/013-1; PS58/014-8; PS58/016-1; PS58/017-1; PS58/018-1; PS58/019-1; PS58/034-1; PS58/036-1; PS58/038-5; PS58/041-2; PS58/042-1; PS58/042-2; PS58/042-5; PS58/042-6; PS58/043-2; PS58/045-1; PS58/045-2; PS58/045-5; PS58/045-7; PS58/045-9; PS58/046-1; PS58/046-3; PS58/048-1; PS58/048-3; PS58/049-1; PS58/049-3; PS58/049-5; PS58/050-1; PS58/055-1; PS58/061-1; PS58/065-1; PS58/066-1; PS58/067-1; PS58/068-1; PS58/069-1; PS58/070-1; PS58/071-1; PS58/073-1; PS58/075-1; PS58/076-1; PS58/077-1; PS58/078-1; PS58/079-2; PS58/080-1; PS58/081-1; PS58/082-1; PS58/083-1; PS58/084-1; PS58/088-4; PS58/088-7; PS58/088-9; PS58/090-4; PS58/091-3; PS58/092-1; PS58/092-3; PS58/092-5; PS58/092-6; PS58/096-1; PS58/097-1; PS58/098-1; PS58/099-1; PS58/100-1; PS58/101-1; PS58/102-1; PS58/103-1; PS58/104-1; PS58/107-5; PS58/107-6; PS58/107-7; PS58/107-9; PS58/108-3; PS58 EISENEX; Quantum Cosine Deep Profiling Sensor QCD-900L; Radiation, photosynthetically active; South Atlantic; Type  (1)
Collection
  • Data  (21)
Keywords
Publisher
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Zark, Maren; Riebesell, Ulf; Dittmar, Thorsten (2015): Effects of ocean acidification on marine dissolved organic matter are not detectable over the succession of phytoplankton blooms. Science Advances, 1(9), e1500531-e1500531, https://doi.org/10.1126/sciadv.1500531
    Publication Date: 2023-02-24
    Description: Marine dissolved organic matter (DOM) represents one of the largest active carbon reservoirs on Earth. Changes in pool size or composition could have major impacts on the global carbon cycle. Ocean acidification is a potential driver for these changes because it influences marine primary production and heterotrophic respiration. Here we show that ocean acidification as expected for a 'business-as-usual' emission scenario in the year 2100 (900 µatm) does not affect the DOM pool with respect to its size and molecular composition. We applied ultrahigh-resolution mass spectrometry to monitor the production and turnover of 7,360 distinct molecular DOM features in an unprecedented long-term mesocosm study in a Swedish Fjord, covering a full cycle of marine production. DOM concentration and molecular composition did not differ significantly between present-day and year 2100 CO2 levels. Our findings are likely applicable to other coastal and productive marine ecosystems in general.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Zark, Maren; Broda, Nadine; Hornick, Thomas; Grossart, Hans-Peter; Riebesell, Ulf; Dittmar, Thorsten (2017): Ocean Acidification Experiments in Large-Scale Mesocosms Reveal Similar Dynamics of Dissolved Organic Matter Production and Biotransformation. Frontiers in Marine Science, https://doi.org/10.3389/fmars.2017.00271
    Publication Date: 2023-02-24
    Description: We investigated the effects of ocean acidification on the DOM pool in the open subtropical North Atlantic Ocean off the coast of Gran Canaria during an oligotrophic phase and after artificial upwelling. Future ocean conditions were simulated in large-scale mesocosms with step-wise increasing pCO2 levels from 450 to 1030 µatm. While we observed no significant effect of ocean acidification on the concentration and molecular composition of DOM we found a pool of compounds which show similar dynamics in all treatments over phytoplankton blooms.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lischka, Silke; Stange, Paul; Riebesell, Ulf (2018): Response of Pelagic Calcifiers (Foraminifera, Thecosomata) to Ocean Acidification During Oligotrophic and Simulated Up-Welling Conditions in the Subtropical North Atlantic Off Gran Canaria. Frontiers in Marine Science, 5:379, https://doi.org/10.3389/fmars.2018.00379
    Publication Date: 2023-06-02
    Description: The present investigation was part of a large-scale in situ mesocosm experiment in the oligotrophic waters of the eastern subtropical North Atlantic. Over 62 days, we measured the abundance and vertical flux of pelagic foraminifers and thecosome pteropods as part of a natural plankton community over a range of OA scenarios. A bloom phase was initiated by the introduction of deep-water collected from approx. 650 m depth simulating a natural up-welling event. Foraminifers occurred throughout the entire experiment in both the water column and the sediment traps. Pteropods were present only in small numbers and disappeared after the first two weeks of the experiment.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mackinder, Luke C M; Wheeler, Glen; Schroeder, Declan C; von Dassow, Peter; Riebesell, Ulf; Brownlee, Colin (2011): Expression of biomineralization-related ion transport genes in Emiliania huxleyi. Environmental Microbiology, 13(12), 3250-3265, https://doi.org/10.1111/j.1462-2920.2011.02561.x
    Publication Date: 2023-09-02
    Description: Biomineralization in the marine phytoplankton Emiliania huxleyi is a stringently controlled intracellular process. The molecular basis of coccolith production is still relatively unknown although its importance in global biogeochemical cycles and varying sensitivity to increased pCO2 levels has been well documented. This study looks into the role of several candidate Ca2+, H+ and inorganic carbon transport genes in E. huxleyi, using quantitative reverse transcriptase PCR. Differential gene expression analysis was investigated in two isogenic pairs of calcifying and non-calcifying strains of E. huxleyi and cultures grown at various Ca2+ concentrations to alter calcite production. We show that calcification correlated to the consistent upregulation of a putative HCO3- transporter belonging to the solute carrier 4 (SLC4) family, a Ca2+/H+ exchanger belonging to the CAX family of exchangers and a vacuolar H+-ATPase. We also show that the coccolith-associated protein, GPA is downregulated in calcifying cells. The data provide strong evidence that these genes play key roles in E. huxleyi biomineralization. Based on the gene expression data and the current literature a working model for biomineralization-related ion transport in coccolithophores is presented.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schulz, Kai Georg; Bellerby, Richard G J; Brussaard, Corina P D; Büdenbender, Jan; Czerny, Jan; Engel, Anja; Fischer, Matthias; Krug, Sebastian; Lischka, Silke; Koch-Klavsen, Stephanie; Ludwig, Andrea; Meyerhöfer, Michael; Nondal, G; Silyakova, Anna; Stuhr, Annegret; Riebesell, Ulf (2013): Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide. Biogeosciences, 10(1), 161-180, https://doi.org/10.5194/bg-10-161-2013
    Publication Date: 2023-10-21
    Description: Ocean acidification and carbonation, driven by anthropogenic emissions of carbon dioxide (CO2), have been shown to affect a variety of marine organisms and are likely to change ecosystem functioning. High latitudes, especially the Arctic, will be the first to encounter profound changes in carbonate chemistry speciation at a large scale, namely the under-saturation of surface waters with respect to aragonite, a calcium carbonate polymorph produced by several organisms in this region. During a CO2 perturbation study in 2010, in the framework of the EU-funded project EPOCA, the temporal dynamics of a plankton bloom was followed in nine mesocosms, manipulated for CO2 levels ranging initially from about 185 to 1420 matm. Dissolved inorganic nutrients were added halfway through the experiment. Autotrophic biomass, as identified by chlorophyll a standing stocks (Chl a), peaked three times in all mesocosms. However, while absolute Chl a concentrations were similar in all mesocosms during the first phase of the experiment, higher autotrophic biomass was measured at high in comparison to low CO2 during the second phase, right after dissolved inorganic nutrient addition. This trend then reversed in the third phase. There were several statistically significant CO2 effects on a variety of parameters measured in certain phases, such as nutrient utilization, standing stocks of particulate organic matter, and phytoplankton species composition. Interestingly, CO2 effects developed slowly but steadily, becoming more and more statistically significant with time. The observed CO2 related shifts in nutrient flow into different phytoplankton groups (mainly diatoms, dinoflagellates, prasinophytes and haptophytes) could have consequences for future organic matter flow to higher trophic levels and export production, with consequences for ecosystem productivity and atmospheric CO2.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schlüter, Lothar; Lohbeck, Kai T; Gröger, Joachim P; Riebesell, Ulf; Reusch, Thorsten B H (2016): Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification. Science Advances, 2(7), e1501660-e1501660, https://doi.org/10.1126/sciadv.1501660
    Publication Date: 2023-10-23
    Description: Recent evolution experiments have revealed that marine phytoplankton may adapt to global change, for example to ocean warming or acidification. Long-term adaptation to novel environments is a dynamic process and phenotypic change can take place thousands of generations after exposure to novel conditions. Using the longest evolution experiment performed in any marine species to date (4 yrs, = 2100 generations), we show that in the coccolithophore Emiliania huxleyi, long-term adaptation to ocean acidification is complex and initial phenotypic responses may revert for important traits. While fitness increased continuously, calcification was restored within the first 500 generations but later reduced in response to selection, enhancing physiological declines of calcification in response to ocean acidification. Interestingly, calcification was not constitutively reduced but revealed rates similar to control treatments when transferred back to present-day CO2 conditions. Growth rate increased with time in controls and adaptation treatments, although the effect size of adaptation assessed through reciprocal assay experiments varied. Several trait changes were associated with selection for higher cell division rates under laboratory conditions, such as reduced cell size and lower particulate organic carbon content per cell. Our results show that phytoplankton may evolve phenotypic plasticity that can affect biogeochemically important traits, such as calcification, in an unforeseen way under future ocean conditions.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schlüter, Lothar; Lohbeck, Kai T; Gutowska, Magdalena A; Gröger, Joachim P; Riebesell, Ulf; Reusch, Thorsten B H (2014): Adaptation of a globally important coccolithophore to ocean warming and acidification. Nature Climate Change, https://doi.org/10.1038/NCLIMATE2379
    Publication Date: 2023-10-23
    Description: Although oceanwarming and acidification are recognized as two major anthropogenic perturbations of today's oceanswe know very little about how marine phytoplankton may respond via evolutionary change.We tested for adaptation to ocean warming in combination with ocean acidification in the globally important phytoplankton species Emiliania huxleyi. Temperature adaptation occurred independently of ocean acidifcation levels. Exponential growth rates were were up to 16% higher in populations adapted for one year to warming when assayed at their upper thermal tolerance limit. Particulate inorganic (PIC) and organic (POC) carbon production was restored to values under present-day ocean conditions, owing to adaptive evolution, and were 101% and 55% higher under combined warming and acidification, respectively, than in non-adapted controls. Cells also evolved to a smaller size while they recovered their initial PIC:POC ratio even under elevated CO2. The observed changes in coccolithophore growth, calcite and biomass production, cell size and elemental composition demonstrate the importance of evolutionary processes for phytoplankton performance in a future ocean. At the end of a 1-yr temperature selection phase, we conducted a reciprocal assay experiment in which temperature-adapted asexual populations were compared to the respective non-adapted control populations under high temperature, and vice versa (1. Assay Data, Dataset #835336). Mean exponential growth rates m in treatments subjected to high temperature increased rapidly under all high temperature-CO2 treatment combinations during the temperature selection phase (2. time series, Dataset #835339).
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Dörner, Isabel; Hauss, Helena; Aberle, Nicole; Lohbeck, Kai T; Spisla, Carsten; Riebesell, Ulf; Ismar, Stefanie M (2020): Ocean acidification impacts on biomass and fatty acid composition of a post-bloom marine plankton community. Marine Ecology Progress Series, p49-64, https://doi.org/10.3354/meps13390
    Publication Date: 2023-10-23
    Description: Quantifying effects of Ocean Acidification (OA) on marine primary and secondary producers is of acute interest, as they could translate up to higher trophic levels and ultimately may alter ecosystem services including fishery yields. A mesocosm approach was used to investigate the effects of OA on a natural plankton community in coastal waters off Norway by manipulating CO2 partial pressure (pCO2). Eight enclosures were deployed in the Raunefjord near Bergen. Treatment levels were ambient and elevated pCO2 of ~ 2000 µatm each in four replicate enclosures. The experiment lasted for 53 days in early summer of 2015. To assess impacts of OA on the plankton community, we measured phytoplankton and protozooplankton biomass and total seston fatty acid (FA) content. In both the control and the elevated pCO2 treatment, the plankton community was dominated by the dinoflagellate Ceratium longipes. In the elevated pCO2 treatment, however, this species as well as other dinoflagellates were strongly negatively impacted: At the end of the experiment, total dinoflagellate biomass was fourfold higher in the control group than under elevated pCO2 treatment. In a size comparison of C. longipes, individuals in the high pCO2 treatment were significantly larger. Fatty acid analysis revealed a decreased ratio of polyunsaturated fatty acids (PUFA) to saturated fatty acids (SFA) at elevated pCO2. Further, docosahexaenoic acid (DHA, C 22:6n3c), essential for development and reproduction of copepods and higher trophic levels, was lower in the high pCO2 treatment. Both in quality and quantity of their food, higher trophic levels thus experienced worse conditions in a community exposed to elevated pCO2, with potentially severe consequences for higher trophic levels.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bach, Lennart Thomas; Riebesell, Ulf; Sett, Scarlett; Febin, Sarah; Rzepka, Paul; Schulz, Kai Georg (2012): An approach for particle sinking velocity measurements in the 3–400 µm size range and considerations on the effect of temperature on sinking rates. Marine Biology, 159(8), 1853-1864, https://doi.org/10.1007/s00227-012-1945-2
    Publication Date: 2024-03-06
    Description: The flux of organic particles below the mixed layer is one major pathway of carbon from the surface into the deep ocean. The magnitude of this export flux depends on two major processes--remineralization rates and sinking velocities. Here, we present an efficient method to measure sinking velocities of particles in the size range from approximately 3-400 µm by means of video microscopy (FlowCAM®). The method allows rapid measurement and automated analysis of mixed samples and was tested with polystyrene beads, different phytoplankton species, and sediment trap material. Sinking velocities of polystyrene beads were close to theoretical values calculated from Stokes' Law. Sinking velocities of the investigated phytoplankton species were in reasonable agreement with published literature values and sinking velocities of material collected in sediment trap increased with particle size. Temperature had a strong effect on sinking velocities due to its influence on seawater viscosity and density. An increase in 9 °C led to a measured increase in sinking velocities of 40 %. According to this temperature effect, an average temperature increase in 2 °C as projected for the sea surface by the end of this century could increase sinking velocities by about 6 % which might have feedbacks on carbon export into the deep ocean.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  GEOMAR - Helmholtz Centre for Ocean Research Kiel | Supplement to: Bach, Lennart Thomas; Riebesell, Ulf; Gutowska, Magdalena A; Federwisch, Luisa; Schulz, Kai Georg (2015): A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Progress in Oceanography, 135, 125-138, https://doi.org/10.1016/j.pocean.2015.04.012
    Publication Date: 2024-03-06
    Description: Coccolithophores are a group of unicellular phytoplankton species whose ability to calcify has a profound influence on biogeochemical element cycling. Calcification rates are controlled by a large variety of biotic and abiotic factors. Among these factors, carbonate chemistry has gained considerable attention during the last years as coccolithophores have been identified to be particularly sensitive to ocean acidification. Despite intense research in this area, a general concept harmonizing the numerous and sometimes (seemingly) contradictory responses of coccolithophores to changing carbonate chemistry is still lacking to date. Here, we present the "substrate-inhibitor concept" which describes the dependence of calcification rates on carbonate chemistry speciation. It is based on observations that calcification rate scales positively with bicarbonate (HCO3-), the primary substrate for calcification, and carbon dioxide (CO2), which can limit cell growth, whereas it is inhibited by protons (H+). This concept was implemented in a model equation, tested against experimental data, and then applied to understand and reconcile the diverging responses of coccolithophorid calcification rates to ocean acidification obtained in culture experiments. Furthermore, we (i) discuss how other important calcification-influencing factors (e.g. temperature and light) could be implemented in our concept and (ii) embed it in Hutchinson's niche theory, thereby providing a framework for how carbonate chemistry-induced changes in calcification rates could be linked with changing coccolithophore abundance in the oceans. Our results suggest that the projected increase of H+ in the near future (next couple of thousand years), paralleled by only a minor increase of inorganic carbon substrate, could impede calcification rates if coccolithophores are unable to fully adapt. However, if calcium carbonate (CaCO3) sediment dissolution and terrestrial weathering begin to increase the oceans' HCO3- and decrease its H+ concentrations in the far future (10 -100 kyears), coccolithophores could find themselves in carbonate chemistry conditions which may be more favorable for calcification than they were before the Anthropocene.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...