ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-08
    Description: This is a discussion of the opportunites provided by Ulysses mission to study.
    Keywords: Solar Physics
    Type: Geophysical Research Letters
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-08
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Ulysses observations have revealed a new class of forward-reverse shock pairs in the solar wind that appears to be restricted to high heliographic latitudes. Shock pairs in this new class of events are produced by over-expansion (i.e., expansion driven by a high internal pressure) of coronal mass ejections, CMEs, that have speeds comparable to that of the surrounding solar wind plasma. Here we compare low- and high-latitude observations of an event observed both near Earth by IMP 8 and at high latitudes by Ulysses. At the time of these observations Ulysses was at 3.53 AU and was situated 47.2 deg south and 11.4 deg west of Earth (in the sense of planetary motion about the Sun). A fast CME that departed from the Sun on February 20, 1994 produced both a major (forward) shock wave disturbance in the ecliptic plane at 1 AU (and a large geomagnetic storm) and a forward reverse shock pair associated with over-expansion of the CME at high heliographic latitudes. The combined measurements provide a graphic illustration of how the same fast CME can produce totally different types of disturbances at low and high latitudes. Differences in the disturbances generated by the CME at high and low latitudes are due primarily to the different speeds initially prevailing in the ambient solar wind ahead of it. These observations are consistent with the results of simple numerical simulations of the event.
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 98; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: We have been comparing measurements of solar wind speed at the Ulysses spacecraft with coronal flux-tube expansion rates, derived from photospheric field measurements using a current-free coronal model. The large-scale patterns of derived speed have continued to reproduce the observed patterns from launch through south polar passage to the present 40S latitude of the spacecraft. The fastest non-transient wind speeds of approx. 860 km/s were encountered at midlatitudes en route to the south pole, rather than during polar passage when the peak speeds were approx. 820 km/s. Although this result is in qualitative agreement with the idea that the wind speed is controlled by the coronal flux-tube expansion rate, the 40 km/s difference is significantly smaller than the 100-150 km/s difference based on our in-ecliptic calibration. This paper will summarize our attempts to resolve this discrepancy and will show the observational status of our coronal/interplanetary comparison at the time of the meeting.
    Keywords: Solar Physics
    Type: ; 63
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: The abundance of helium in the solar wind averages approximately 4% but has been observed to vary by more than two orders of magnitude from 0.1 to 30%. Physical processes responsible for this variability are still not clearly understood. Previous work has shown a correlation between low He abundance and coronal streamer plasma and between high He abundance and coronal mass ejections (CMEs). We now have out-of-ecliptic data on helium in the solar wind from the plasma experiment aboard Ulysses. Tentative results show that the average high-latitude helium concentration is comparable to the in-ecliptic value for the present phase of the solar cycle, that excursions of the hour-averaged abundance very seldom fall outside the range 2.5 to 6.5%, and that there seems to be very little abundance enhancement associated with CMEs encountered at latitudes greater than 30 deg as opposed to the situation commonly encountered with in-ecliptic CMEs. In addition, preliminary observations of a single CME by both ISEE (in-ecliptic) and Ulysses (out-of-ecliptic) show a considerable He enhancement at ISEE with little or no perturbation of the average value at Ulysses' location. This paper will first present new results from the Ulysses mission up to the time of the meeting on the average abundance of helium in the solar wind as a function of spacecraft position, and will then focus on the out-of-ecliptic results including latitudinal abundance variations and observations of abundance enhancements (or lack thereof) in high-latitude CMEs.
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 73; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-23
    Description: The Solar wind in the inner heliosphere, inside approximately 5 AU, has been almost fully characterized by the addition of the high heliographic latitude Ulysses mission to the many low latitude inner heliosphere missions that preceded it. The two major omissions are the high latitude solar wind at solar maximum, which will be measured during the second Ulysses polar passages, and the solar wind near the Sun, which could be analyzed by a Solar Probe mission. Here, existing knowledge of the global solar wind in the inner heliosphere is summarized in the context of the new results from Ulysses.
    Keywords: Solar Physics
    Type: Space Science Reviews (ISSN 0038-6308); Volume 83; 75-86
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-23
    Description: The first evidence of the solar wind was provided through observations of comet tail deflections by L. Biermann in 1951. A cometary ion tail is oriented along the difference between the cometary and solar wind velocities, whereas the dust tail is in the antisunward direction; the ion tail directions demonstrated the existence of an outflow of ionized gas from the Sun (the solar wind) and allowed estimates of solar wind speed. Spacecraft observations have now established that at 1 AU the solar wind has a typical ion number density of about 7 /cc and is composed by number of about 95% protons and 5% Helium, with other minor ions also present. The solar wind as observed at 1 AU in the ecliptic has speeds typically in the range 300-700 km/ s. At such speeds ions travel from the Sun to 1 AU in from 2.5 to 6 days. The impact of the solar wind on planets with magnetic fields (Earth, Jupiter, Saturn, Uranus, Neptune) causes phenomena such as magnetospheres, aurorae, and geomagnetic storms, whereas at objects lacking magnetospheres (Mars, Venus, comets), atmospheric neutrals undergo charge exchange and are picked up by the solar wind flow. The solar wind also shields the Earth from low energy cosmic rays, and is responsible for the existence of the anomalous component of the cosmic rays a low energy component that is created locally rather than in the galaxy. Presented here is a brief introduction to the solar wind and a description of some current topics of research. Solar wind properties vary a great deal due to the changing magnetic structure on the Sun.
    Keywords: Solar Physics
    Type: From the Sun: Auroras Magnetic Storms, Solar Flares, Cosmic Rays; 73-79; LC-98-46324
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-16
    Description: A closed-form solution for the sound radiation from multipole sources imbedded in an infinite cylindrical jet with an arbitrary velocity profile is obtained. It is valid in the limit where the wavelength is large compared with the jet radius. Simple formulae for the acoustic pressure field due to convected point sources are also obtained. The results show (in a simple way) how the mean flow affects the radiation pattern from the sources. For convected lateral quadrupoles it causes the exponent of the Doppler factor multiplying the far-field pressure signal to be increased from the value of 3 used by Lighthill to 5.
    Keywords: AERODYNAMICS
    Type: Journal of Fluid Mechanics; 70; Aug. 12
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-16
    Description: A general equation governing aerodynamic sound generation in the presence of solid boundaries is derived. It is shown that all the theories in the literature appear as special cases of this general equation. Derived special equations for propeller and fan noise are likewise shown to be more general than the conventional equations in that they make allowance for variation in retarded time over the blade surfaces.
    Keywords: AERODYNAMICS
    Type: Acoustical Society of America; vol. 56
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-16
    Description: A model based on Lighthill's theory for predicting aerodynamic noise from a turbulent shear flow is developed. This model is a generalization of the one developed by Ribner. It does not require that the turbulent correlations factor into space and time-dependent parts. It replaces his assumption of isotropic turbulence by the more realistic one of axisymmetric turbulence. In the course of the analysis, a hierarchy of equations is developed wherein each succeeding equation involves more assumptions than the preceding equation but requires less experimental information for its use. The implications of the model for jet noise are discussed. It is shown that for the particular turbulence data considered anisotropy causes the high-frequency self-noise to be beamed downstream.
    Keywords: AERODYNAMICS
    Type: Acoustical Society of America; vol. 54
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...