ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AERODYNAMICS  (6)
  • Aeronautics (General); Engineering (General)  (1)
  • Aircraft Design, Testing and Performance; Fluid Mechanics and Thermodynamics  (1)
  • Cybernetics, Artificial Intelligence and Robotics; Computer Programming and Software; Air Transportation and Safety  (1)
  • 1
    Publication Date: 2019-06-28
    Description: Flow fields about a generic flighter model were computed using FL057, a 3-D, finite volume Euler code. Computed pressure coefficients, forces, and moments at several Mach numbers (0.6, 0.8, 1.2, 1.4, and 1.6) are compared with wind tunnel data over a wide range of angles of attack in order to determine the applicability of the code for the analysis of fighter configurations. Two configurations were studied, a wing-body and a wing-body-chine. FL057 predicted pressure distributions, forces, and moments well at low angles of attack, at which the flow was fully attached. The FL057 predictions were also accurate for some test conditions once the leading edge vortex became well established. At the subsonic speeds, FL057 predicted vortex breakdown earlier than that seen in the experimental results. Placing the chine on the forebody delayed the onset of bursting and improved the correlation between numerical and experimental data at the subsonic conditions.
    Keywords: AERODYNAMICS
    Type: NASA-TP-3156 , A-90161 , NAS 1.60:3156
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: We describe a Cartesian grid strategy for the study of three dimensional inviscid flows about arbitrary geometries that uses both conventional and CAD/CAM surface geometry databases. Initial applications of the technique are presented. The elimination of the body-fitted constraint allows the grid generation process to be automated, significantly reducing the time and effort required to develop suitable computational grids for inviscid flowfield simulations.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 93-3386 , In: AIAA Computational Fluid Dynamics Conference, 11th, Orlando, FL, July 6-9, 1993, Technical Papers. Pt. 2 (A93-44994 18-34); p. 959-969.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: An attempt is made to extend grid refinement into three dimensions by using unstructured hexahedral grids. The flow solver is developed using the TIGER (topologically Independent Grid, Euler Refinement) as the starting point. The program uses an unstructured hexahedral mesh and a modified version of the Jameson four-stage, finite-volume Runge-Kutta algorithm for integration of the Euler equations. The unstructured mesh allows for local refinement appropriate for each freestream condition, thereby concentrating mesh cells in the regions of greatest interest. This increases the computational efficiency because the refinement is not required to extend throughout the entire flow field.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 91-0637
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Aerodynamic analysis using computational fluid dynamics (CFD) is most fruitful when it is combined with a thorough program of wind tunnel testing. The understanding of aerodynamic phenomena is enhanced by the synergistic use of both analysis methods. A technique is described for an integrated approach to determining the forces and moments acting on a wind tunnel model by using a combination of experimentally measured pressures and CFD predictions. The CFD code used was FLO57 (an Euler solver) and the wind tunnel model was a heavily instrumented delta wing with 62.5 deg of leading-edge sweep. A thorough comparison of the CFD results and the experimental data is presented for surface pressure distributions and longitudinal forces and moments. The experimental pressures were also integrated over the surface of the model and the resulting forces and moments are compared to the CFD and wind tunnel results. The accurate determination of various drag increments via the combined use of the CFD and experimental pressures is presented in detail.
    Keywords: AERODYNAMICS
    Type: NASA-TM-102195 , A-89145 , NAS 1.15:102195
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-27
    Description: Flow fields about a generic fighter model have been computed using FLO57, a three-dimensional, finite-volume Euler code. Computed pressure coefficients, forces, and moments at several Mach numbers - 0.6, 0.8, 1.2, 1.4, and 1.6 - are compared with wind tunnel data over a wide range of angles of attack in order to determine the applicability of the code for the analysis of fighter configurations. Two configurations were studied, a wing/body and a wing/body/chine. FLO57 predicted pressure distributions, forces, and moments well at low angles of attack, at which the flow was fully attached. The FLO57 predictions were also accurate for some test conditions once the leading-edge vortex became well established. At the subsonic speeds, FLO57 predicted vortex breakdown earlier than that seen in the experimental results. Placing the chine on the forebody delayed the onset of bursting and improved the correlation between numerical and experimental data at the subsonic conditions.
    Keywords: AERODYNAMICS
    Type: ICAS Congress; Sept. 9-14, 1990; Stockholm; Sweden
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-08
    Description: Presentation for Oshkosh 2019 describing UAM research at NASA
    Keywords: Aeronautics (General); Engineering (General)
    Type: ARC-E-DAA-TN70709 , EAA Airventure 2019; Jul 22, 2019 - Jul 28, 2019; Oshkosh, WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: A hyperbolic prismatic grid generation technique is combined with a background Cartesian grid for the study of inviscid three-dimensional flows. The mathematics of the hyperbolic prismatic grid generation algorithm are described, and some simple inviscid demonstration cases are presented. By combining the simplicity of the Cartesian background grid with the geometric flexibility and computational efficiencies inherent to prismatic grids, this approach shows promise for improving computational aerodynamic simulations.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 93-0331 , ; 12 p.|AIAA, Aerospace Sciences Meeting and Exhibit; Jan 11, 1993 - Jan 14, 1993; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: This paper describes the process used for estimating flow-through balance momentum tares. The interaction of jet engine exhausts on the BOEINGERA Hybrid Wing Body (HWB) was simulated in the NFAC 40x80 wind tunnel at NASA Ames using a pair of turbine powered simulators (TPS). High-pressure air was passed through a flow-through balance and manifold before being delivered to the TPS units. The force and moment tares that result from the internal shear and pressure distribution were estimated using CFD. Validation of the CFD simulations for these complex internal flows is a challenge, given limited experimental data due to the complications of the internal geometry. Two CFD validation efforts are documented, and comparisons with experimental data from the final model installation are provided.
    Keywords: Aircraft Design, Testing and Performance; Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN28731 , AIAA Science and Technology Forum and Exposition (SciTech 2016); Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The most difficult phase of small Unmanned Aerial System (sUAS) deployment is autonomous operations below the notional 50 ft in urban landscapes. Understanding the feasibility of safely flying sUAS autonomously below 50 ft is a game changer for many civilian applications. This paper outlines three areas of research currently underway which address key challenges for flight in the urban landscape. These are: (1) Off-line and On-board wind estimation and accommodation; (2) Real-time trajectory planning via characterization of obstacles using a LIDAR; (3) On-board information fusion for real-time decision-making and safe trajectory generation.
    Keywords: Cybernetics, Artificial Intelligence and Robotics; Computer Programming and Software; Air Transportation and Safety
    Type: ARC-E-DAA-TN38504 , SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...