ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-12-05
    Description: The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps–Apennines–Carpathians–Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.
    Description: Published
    Description: 1009–1033
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Seismology ; Alps ; Seismic network ; Geodynamics ; Seismic imaging ; Mountain building
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-23
    Description: Wind turbines produce mechanical energy that can propagate to the ground and disturb sensitive measurements such as seismic recordings. The aim of the large-scale experiment Seismic Monitoring And Research of wind Turbine Induced Emissions (SMARTIE1) at a single wind turbine in Pfinztal (SW Germany) is to understand how wind turbines emit seismic signals under different operating conditions and how these seismic signals propagate through the local subsurface. The main objectives of SMARTIE1 are the investigation of wind turbine induced seismic signals, the characteristics of their propagation behaviour, as well as the radiation pattern of a single wind turbine as defined using particle motions. Moreover, we quantify the emission of the wind turbine induced seismic signals with respect to the wind speed. The combination of the wind turbine's emission into the subsurface and the attenuation behaviour of the seismic signals (ground motion velocity) can be used to estimate protection radii around seismic stations to ensure the recording of seismic signals without noticeable influences of the wind turbines. In this study, we detect several discrete wind turbine induced frequency peaks ranging from 1 to 10 Hz. We identify a radiation pattern of the wind turbine, which could give further insights into the interaction between the movement of the wind turbine's nacelle and the generation of the wind turbine induced seismic signals. Using profile measurements with a maximum distance of almost 3 km each, we fit a power-law decay for power spectral density proportional to 1/rb. The attenuation factor, b, ranges from 0.7 to 1.3 for lower frequencies between 1 and 4 Hz, and increases to b = 2.3 for the higher frequency peak around 5.25 Hz. Finally, we present an example of estimation of a protection radius around the seismic station of the Collm Observatorium that is part of the German Regional Seismic Network. The example protection radius around Collm Observatorium regarding this single wind turbine is reached at a minimum distance of 3.7 km.
    Keywords: 511.22 ; 622.1592 ; Attenuation ; Seismic ; Surface waves
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...