ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 5-SF3-CF  (1)
  • Antarctic Bottom Water  (1)
  • Anthropogenic climate change  (1)
  • Formation
Collection
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 35 (2008): L04602, doi:10.1029/2007GL032799.
    Description: SF6 tracer release experiments (TREs) have provided fundamental insights in many areas of Oceanography. Recently, SF6 has emerged as a powerful transient tracer, generating a need for an alternative tracer for large-scale ocean TREs. SF5CF3 has the potential to replace SF6 in TREs, due to similarities in their properties and behavior, as well as techniques for injection, sampling, and analysis. The suitability of SF5CF3 for TREs was examined in Santa Monica Basin, off the coast of Southern California. In January 2005, a mixture of ca. 10 mol of both SF6 and SF5CF3 was injected on an isopycnal surface near 800 m depth. Over the next 23 months, concentrations of the two tracers mirrored each other very closely, indicating that SF5CF3 is a viable replacement for SF6 in ocean TREs. The mixing parameters inferred from the experiment confirmed the results from an earlier SF6 TRE in the Santa Monica Basin.
    Description: Funding was provided by the US National Science Foundation through OCE0425404 to W. Smethie and D. Ho and OCE0425197 to J. Ledwell.
    Keywords: Tracer release experiment ; 5-SF3-CF ; 6-SF
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/postscript
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 6542–6563, doi:10.1002/2015JC010751.
    Description: Hydrographic data, chlorofluorocarbon-12 (CFC-12) and sulfur hexafluoride (SF6) measurements collected in March 2010 and September–October 2011 in the Red Sea, as well as an idealized numerical experiment are used to study the formation and spreading of Red Sea Outflow Water (RSOW) in the Red Sea. Analysis of inert tracers, potential vorticity distributions, and model results confirm that RSOW is formed through mixed-layer deepening caused by sea surface buoyancy loss in winter in the northern Red Sea and reveal more details on RSOW spreading rates, pathways, and vertical structure. The southward spreading of RSOW after its formation is identified as a layer with minimum potential vorticity and maximum CFC-12 and SF6. Ventilation ages of seawater within the RSOW layer, calculated from the partial pressure of SF6 (pSF6), range from 2 years in the northern Red Sea to 15 years at 17°N. The distribution of the tracer ages is in agreement with the model circulation field which shows a rapid transport of RSOW from its formation region to the southern Red Sea where there are longer circulation pathways and hence longer residence time due to basin wide eddies. The mean residence time of RSOW within the Red Sea estimated from the pSF6 age is 4.7 years. This time scale is very close to the mean transit time (4.8 years) for particles from the RSOW formation region to reach the exit at the Strait of Bab el Mandeb in the numerical experiment.
    Description: King Abdullah University of Science and Technology (KAUST) Grant Numbers: USA 00002, KSA 00011, KSA 00011/02; National Science Foundation; WHOI Academic Program Office Grant Number: OCE0927017
    Description: 2016-03-29
    Keywords: Anthropogenic tracers ; Red Sea Outflow Water ; Transit time ; Formation ; Spreading ; Residence time
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Annual Review of Marine Science 8 (2016): 185-215, doi:10.1146/annurev-marine-052915-100829.
    Description: The ocean, a central component of Earth’s climate system, is changing. Given the global scope of these changes, highly accurate measurements of physical and biogeochemical properties need to be conducted over the full water column, spanning the ocean basins from coast to coast, and repeated every decade at a minimum, with a ship-based observing system. Since the late 1970s, when the Geochemical Ocean Sections Study (GEOSECS) conducted the first global survey of this kind, the World Ocean Circulation Experiment (WOCE) and Joint Global Ocean Flux Study (JGOFS), and now the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP) have collected these “reference standard” data that allow quantification of ocean heat and carbon uptake, and variations in salinity, oxygen, nutrients, and acidity on basin scales. The evolving GO-SHIP measurement suite also provides new global information about dissolved organic carbon, a large bioactive reservoir of carbon.
    Description: Climate Observations Division of the U.S. NOAA Climate Program Office and NOAA Research; Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA10OAR4320148; U.S. National Science Foundation [OCE- 0223869; OCE-0752970; OCE-0825163; OCE-1434000; OCE 0752972; OCE-0752980; OCE-1232962; OCE-1155983; OCE-1436748]; U.S. CLIVAR Project Office; Global Environment and Marine Department, Japan Meteorological Agency; Australian Climate Change Science Program (Australian Department of Environment and CSIRO); U.K. Natural Environment Research Council; European Union’s FP7 grant agreement 264879 (CarboChange); Horizon 2020 grant agreement No 633211; ETH Zurich Switzerland.
    Keywords: Anthropogenic climate change ; Ocean temperature change ; Salinity change ; Ocean carbon cycle ; Ocean oxygen and nutrients ; Ocean chlorofluorocarbons ; Ocean circulation change ; Ocean mixing
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(3), (2019): 1778-1794, doi:10.1029/2018JC014775.
    Description: Abyssal ocean warming contributed substantially to anthropogenic ocean heat uptake and global sea level rise between 1990 and 2010. In the 2010s, several hydrographic sections crossing the South Pacific Ocean were occupied for a third or fourth time since the 1990s, allowing for an assessment of the decadal variability in the local abyssal ocean properties among the 1990s, 2000s, and 2010s. These observations from three decades reveal steady to accelerated bottom water warming since the 1990s. Strong abyssal (z 〉 4,000 m) warming of 3.5 (±1.4) m°C/year (m°C = 10−3 °C) is observed in the Ross Sea, directly downstream from bottom water formation sites, with warming rates of 2.5 (±0.4) m°C/year to the east in the Amundsen‐Bellingshausen Basin and 1.3 (±0.2) m°C/year to the north in the Southwest Pacific Basin, all associated with a bottom‐intensified descent of the deepest isotherms. Warming is consistently found across all sections and their occupations within each basin, demonstrating that the abyssal warming is monotonic, basin‐wide, and multidecadal. In addition, bottom water freshening was strongest in the Ross Sea, with smaller amplitude in the Amundsen‐Bellingshausen Basin in the 2000s, but is discernible in portions of the Southwest Pacific Basin by the 2010s. These results indicate that bottom water freshening, stemming from strong freshening of Ross Shelf Waters, is being advected along deep isopycnals and mixed into deep basins, albeit on longer timescales than the dynamically driven, wave‐propagated warming signal. We quantify the contribution of the warming to local sea level and heat budgets.
    Description: S. G. P. was supported by a U.S. GO‐SHIP postdoctoral fellowship through NSF grant OCE‐1437015, which also supported L. D. T. and S. M. and collection of U.S. GO‐SHIP data since 2014 on P06, S4P, P16, and P18. G. C. J. is supported by the Global Ocean Monitoring and Observation Program, National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce and NOAA Research. B. M. S and S. E. W. were supported by the Australian Government Department of the Environment and CSIRO through the Australian Climate Change Science Programme and by the National Environmental Science Program. We are grateful for the hard work of the science parties, officers, and crew of all the research cruises on which these CTD data were collected. We also thank the two anonymous reviewers for their helpful comments that improve the manuscript. This is PMEL contribution 4870. All CTD data sets used in this analysis are publicly available at the website (https://cchdo.ucsd.edu).
    Description: 2019-08-20
    Keywords: Abyssal warming ; Pacific deep circulation ; Deep steric sea level ; Deep warming variability ; Antarctic Bottom Water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...