ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (4)
  • Cucurbita pepo  (3)
  • 3' Untranslated Regions/genetics  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 4 (1991), S. 208-214 
    ISSN: 1432-2145
    Keywords: Cucurbita pepo ; Pollen competition ; Geno-type ; Non-random fertilization ; Pollen performance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary This study examines the assumption of the pollen competition hypothesis that genetic differences among microgametophytes lead to differences in pollen performance and result in non-random fertilization. In addition, we examined the assumption that pollen performance is genetically correlated with sporophyte vigor due to an overlap in gene expression between the two stages of the life cycle. The results from a pollen mixture experiment in which two cultivars of common zucchini were used show that the ability to sire seeds is nonrandom with respect to the cultivar of the pollen donor plant. The proportion of the progeny sired by the two cultivars is not independent of the region of the fruit where the seeds are produced. The progeny sired by the yellow cultivar outperformed the progeny sired by the green cultivar in a greenhouse study. In addition, the progeny sired by the yellow cultivar from the stylar region of the fruit germinated faster and had more leaf area than the progeny sired by the same cultivar from the peduncular end of the fruit. Thus, the most vigorous progeny are obtained from the stylar region of the fruit where the ovules are fertilized by the most vigorous microgametophytes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 92 (1996), S. 885-890 
    ISSN: 1432-2242
    Keywords: Key words  Microgametophyte selection ; Pollen selection ; Pollen competition ; Cucurbita texana ; Cucurbita pepo
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract   We examined the effects of pollen selection for rapid pollen-tube growth on progeny vigor. First, we crossed a wild gourd (Cucurbita texana) to a cultivated zucchini (Cucurbita pepo cv `Black Beauty') to produce an F1 and then an F2 generation. Half of the F1 seeds were produced by depositing small loads of C. texana pollen onto the stigmas of C. pepo. These small pollen loads were insufficient to produce a full complement of seeds and, consequently, both the fast- and the slow-growing pollen tubes were permitted to achieve fertilization. An F2 generation was then produced by depositing small loads of F1 pollen onto stigmas of F1 plants. The F2 seeds resulting from two generations of small pollen loads are termed 'the non-selected line' because there was little or no selection for pollen-tube growth rate on these plants. The other half of the F1 and F2 seeds were produced by depositing large pollen loads (〉10000 pollen grains) onto stigmas and then allowing only the first 1% or so of the pollen tubes that entered the ovary to fertilize the ovules. We did this by excising the styles at the ovary at 12–15 h after pollination. The resulting F2 seeds are termed `the selected line' because they were produced by two generations of selection for only the fastest growing pollen tubes. Small pollen loads from the F2 plants, both the selected and the non-selected lines, were then deposited onto stigmas of different C. pepo flowers, and the vigor of the resulting seeds was compared under greenhouse and field conditions. The results showed that the seeds fertilized by pollen from the selected line had greater vegetative vigor as seedlings and greater flower and fruit production as mature plants than the seeds fertilized by pollen from the non-selected line. This study demonstrates that selection for fast pollen-tube growth (selection on the microgametophyte) leads to a correlated increase in sporophyte (progeny) vigor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 92 (1996), S. 885-890 
    ISSN: 1432-2242
    Keywords: Microgametophyte selection ; Pollen selection ; Pollen competition ; Cucurbita texana ; Cucurbita pepo
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We examined the effects of pollen selection for rapid pollen-tube growth on progeny vigor. First, we crossed a wild gourd (Cucurbita texana) to a cultivated zucchini (Cucurbita pepo cv ‘Black Beauty’) to produce an F1 and then an F2 generation. Half of the F1 seeds were produced by depositing small loads of C. texana pollen onto the stigmas of C. pepo. These small pollen loads were insufficient to produce a full complement of seeds and, consequently, both the fast- and the slow-growing pollen tubes were permitted to achieve fertilization. An F2 generation was then produced by depositing small loads of F1 pollen onto stigmas of F1 plants. The F2 seeds resulting from two generations of small pollen loads are termed the non-selected line because there was little or no selection for pollen-tube growth rate on these plants. The other half of the F1 and F2 seeds were produced by depositing large pollen loads (〉10 000 pollen grains) onto stigmas and then allowing only the first 1% or so of the pollen tubes that entered the ovary to fertilize the ovules. We did this by excising the styles at the ovary at 12–15 h after pollination. The resulting F2 seeds are termed ‘the selected line’ because they were produced by two generations of selection for only the fastest growing pollen tubes. Small pollen loads from the F2plants, both the selected and the non-selected lines, were then deposited onto stigmas of different C. pepo flowers, and the vigor of the resulting seeds was compared under greenhouse and field conditions. The results showed that the seeds fertilized by pollen from the selected line had greater vegetative vigor as seedlings and greater flower and fruit production as mature plants than the seeds fertilized by pollen from the non-selected line. This study demonstrates that selection for fast pollen-tube growth (selection on the microgametophyte) leads to a correlated increase in sporophyte (progeny) vigor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Chemie Ingenieur Technik - CIT 64 (1992), S. 570-571 
    ISSN: 0009-286X
    Keywords: 2,3-Butandiol ; Klebsiella oxytoca ; Stärke ; Melasse ; fermentative Herstellung ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0009-286X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Die Makromolekulare Chemie 142 (1971), S. 313-318 
    ISSN: 0025-116X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Die Makromolekulare Chemie 127 (1969), S. 253-263 
    ISSN: 0025-116X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Description / Table of Contents: p-Vinyl-trans-stilbene was obtained by GRIGNARD reaction from p-chlorostyrene and phenyl acetaldehyde. It was radically polymerized and copolymerized with styrene in benzene solution at 60°C. The polymerization takes place only via the vinyl group; the linear polymers formed contain C°C double bonds in the side chains. From IR-spectroscopic analysis of the copolymers the following reactivity ratios result: \documentclass{article}\pagestyle{empty}\begin{document}${\rm r}_{\rm 1} = 5,5 \pm 0,5{\rm }(p - {\rm Vinyl} - {\rm trans} - {\rm stilben}){\rm und r}_{\rm 2} = 0,36 \pm 0,02{\rm }({\rm Styrene})$\end{document}Copolymers of p-vinyl-trans-stilbene and styrene give deeply coloured solutions of the corresponding polyradicalanions and polydianions by reaction with sodium in tetrahydrofuran. The macromolecular radicalanions and dianions of the cited copolymers initiate the polymerization of acrylonitrile, methyl methacrylate and styrene essentially by electron transfer and without grafting; when styrene is used, “living” polymers are formed.
    Notes: p-Vinyl-trans-stilben wurde durch GRIGNARD-Synthese aus p-Chlorstyrol und Phenylacetaldehyd erhalten. Es wurde radikalisch in benzolischer Lösung bei 60°C polymerisiert und mit Styrol copolymerisiert. Die Polymerisation verläuft nur über die Vinylgruppe; dabei entstehen lineare Polymere, die C°C-Doppelbindungen in der Seitenkette enthalten. Durch infrarotspektroskopische Analyse der Copolymeren ergeben sich folgende Parameter: \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm r}_{\rm 1} = 5,5 \pm 0,5{\rm }(p - {\rm Vinyl} - {\rm trans} - {\rm stilben}){\rm und r}_{\rm 2} = 0,36 \pm 0,02{\rm }({\rm Styrol})$\end{document}Die Copolymeren aus p-Vinyl-trans-stilben und Styrol bilden mit Natrium in Tetrahydrofuran tief gefärbte Lösungen der entsprechenden Polyradikalanionen und Polydianionen. Die makromolekularen Radikalanionen und Dianionen der genannten Copolymeren starten die Polymerisation von Acrylnitril, Methylmethacrylat und Styrol im wesentlichen durch Elektronenübertragung und nicht unter Pfropfung; mit Styrol entstehen dabei „lebende“ Polymere.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-07-23
    Description: Chronic lymphocytic leukaemia (CLL) is a frequent disease in which the genetic alterations determining the clinicobiological behaviour are not fully understood. Here we describe a comprehensive evaluation of the genomic landscape of 452 CLL cases and 54 patients with monoclonal B-lymphocytosis, a precursor disorder. We extend the number of CLL driver alterations, including changes in ZNF292, ZMYM3, ARID1A and PTPN11. We also identify novel recurrent mutations in non-coding regions, including the 3' region of NOTCH1, which cause aberrant splicing events, increase NOTCH1 activity and result in a more aggressive disease. In addition, mutations in an enhancer located on chromosome 9p13 result in reduced expression of the B-cell-specific transcription factor PAX5. The accumulative number of driver alterations (0 to 〉/=4) discriminated between patients with differences in clinical behaviour. This study provides an integrated portrait of the CLL genomic landscape, identifies new recurrent driver mutations of the disease, and suggests clinical interventions that may improve the management of this neoplasia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Puente, Xose S -- Bea, Silvia -- Valdes-Mas, Rafael -- Villamor, Neus -- Gutierrez-Abril, Jesus -- Martin-Subero, Jose I -- Munar, Marta -- Rubio-Perez, Carlota -- Jares, Pedro -- Aymerich, Marta -- Baumann, Tycho -- Beekman, Renee -- Belver, Laura -- Carrio, Anna -- Castellano, Giancarlo -- Clot, Guillem -- Colado, Enrique -- Colomer, Dolors -- Costa, Dolors -- Delgado, Julio -- Enjuanes, Anna -- Estivill, Xavier -- Ferrando, Adolfo A -- Gelpi, Josep L -- Gonzalez, Blanca -- Gonzalez, Santiago -- Gonzalez, Marcos -- Gut, Marta -- Hernandez-Rivas, Jesus M -- Lopez-Guerra, Monica -- Martin-Garcia, David -- Navarro, Alba -- Nicolas, Pilar -- Orozco, Modesto -- Payer, Angel R -- Pinyol, Magda -- Pisano, David G -- Puente, Diana A -- Queiros, Ana C -- Quesada, Victor -- Romeo-Casabona, Carlos M -- Royo, Cristina -- Royo, Romina -- Rozman, Maria -- Russinol, Nuria -- Salaverria, Itziar -- Stamatopoulos, Kostas -- Stunnenberg, Hendrik G -- Tamborero, David -- Terol, Maria J -- Valencia, Alfonso -- Lopez-Bigas, Nuria -- Torrents, David -- Gut, Ivo -- Lopez-Guillermo, Armando -- Lopez-Otin, Carlos -- Campo, Elias -- England -- Nature. 2015 Oct 22;526(7574):519-24. doi: 10.1038/nature14666. Epub 2015 Jul 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departamento de Bioquimica y Biologia Molecular, Instituto Universitario de Oncologia (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain. ; Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain. ; Unitat de Hematologia, Hospital Clinic, IDIBAPS, Universitat de Barcelona, 08036 Barcelona, Spain. ; Departament d'Anatomia Patologica, Microbiologia i Farmacologia, Universitat de Barcelona, 08036 Barcelona, Spain. ; Programa Conjunto de Biologia Computacional, Barcelona Supercomputing Center (BSC), Institut de Recerca Biomedica (IRB), Spanish National Bioinformatics Institute, Universitat de Barcelona, 08028 Barcelona, Spain. ; Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain. ; Unidad de Genomica, IDIBAPS, 08036 Barcelona, Spain. ; Servicio de Hematologia, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain. ; Institute for Cancer Genetics, Columbia University, New York 10032, USA. ; Servicio de Hematologia, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain. ; Center for Genomic Regulation (CRG), Pompeu Fabra University (UPF), Hospital del Mar Research Institute (IMIM), 08003 Barcelona, Spain. ; Servicio de Hematologia, IBSAL-Hospital Universitario de Salamanca, Centro de Investigacion del Cancer, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain. ; Centro Nacional de Analisis Genomico, Parc Cientific de Barcelona, 08028 Barcelona, Spain. ; Catedra Inter-Universitaria de Derecho y Genoma Humano, Universidad de Deusto, Universidad del Pais Vasco, 48007 Bilbao, Spain. ; Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Spanish National Bioinformatics Institute, 28029 Madrid, Spain. ; Institute of Applied Biosciences, Center for Research and Technology Hellas, 57001 Thermi, Thessaloniki, Greece. ; Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, 6500 HB Nijmegen, The Netherlands. ; Servicio de Hematologia, Hospital Clinico de Valencia, 46010 Valencia, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26200345" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/genetics ; Alternative Splicing/genetics ; B-Cell-Specific Activator Protein/biosynthesis/genetics ; B-Lymphocytes/metabolism ; Carrier Proteins/genetics ; Chromosomes, Human, Pair 9/genetics ; DNA Mutational Analysis ; DNA, Neoplasm/genetics ; Enhancer Elements, Genetic/genetics ; Genomics ; Humans ; Leukemia, Lymphocytic, Chronic, B-Cell/*genetics/metabolism/pathology ; Mutation/*genetics ; Nerve Tissue Proteins/genetics ; Nuclear Proteins/genetics ; Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics ; Receptor, Notch1/genetics/metabolism ; Transcription Factors/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-04-03
    Description: The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken-the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187626/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187626/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warren, Wesley C -- Clayton, David F -- Ellegren, Hans -- Arnold, Arthur P -- Hillier, Ladeana W -- Kunstner, Axel -- Searle, Steve -- White, Simon -- Vilella, Albert J -- Fairley, Susan -- Heger, Andreas -- Kong, Lesheng -- Ponting, Chris P -- Jarvis, Erich D -- Mello, Claudio V -- Minx, Pat -- Lovell, Peter -- Velho, Tarciso A F -- Ferris, Margaret -- Balakrishnan, Christopher N -- Sinha, Saurabh -- Blatti, Charles -- London, Sarah E -- Li, Yun -- Lin, Ya-Chi -- George, Julia -- Sweedler, Jonathan -- Southey, Bruce -- Gunaratne, Preethi -- Watson, Michael -- Nam, Kiwoong -- Backstrom, Niclas -- Smeds, Linnea -- Nabholz, Benoit -- Itoh, Yuichiro -- Whitney, Osceola -- Pfenning, Andreas R -- Howard, Jason -- Volker, Martin -- Skinner, Bejamin M -- Griffin, Darren K -- Ye, Liang -- McLaren, William M -- Flicek, Paul -- Quesada, Victor -- Velasco, Gloria -- Lopez-Otin, Carlos -- Puente, Xose S -- Olender, Tsviya -- Lancet, Doron -- Smit, Arian F A -- Hubley, Robert -- Konkel, Miriam K -- Walker, Jerilyn A -- Batzer, Mark A -- Gu, Wanjun -- Pollock, David D -- Chen, Lin -- Cheng, Ze -- Eichler, Evan E -- Stapley, Jessica -- Slate, Jon -- Ekblom, Robert -- Birkhead, Tim -- Burke, Terry -- Burt, David -- Scharff, Constance -- Adam, Iris -- Richard, Hugues -- Sultan, Marc -- Soldatov, Alexey -- Lehrach, Hans -- Edwards, Scott V -- Yang, Shiaw-Pyng -- Li, Xiaoching -- Graves, Tina -- Fulton, Lucinda -- Nelson, Joanne -- Chinwalla, Asif -- Hou, Shunfeng -- Mardis, Elaine R -- Wilson, Richard K -- BB/D013704/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E010652/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/F007590/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBE0175091/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBS/E/I/00001425/Biotechnology and Biological Sciences Research Council/United Kingdom -- MC_U137761446/Medical Research Council/United Kingdom -- P30 DA018310/DA/NIDA NIH HHS/ -- R01 DC007218/DC/NIDCD NIH HHS/ -- R01 GM059290/GM/NIGMS NIH HHS/ -- R01 GM085233/GM/NIGMS NIH HHS/ -- R01 GM59290/GM/NIGMS NIH HHS/ -- R01 HG002939/HG/NHGRI NIH HHS/ -- R01 NS045264/NS/NINDS NIH HHS/ -- R01NS051820/NS/NINDS NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Apr 1;464(7289):757-62. doi: 10.1038/nature08819.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Genome Center, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA. wwarren@watson.wustl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360741" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/genetics ; Animals ; Auditory Perception/genetics ; Brain/physiology ; Chickens/genetics ; Evolution, Molecular ; Female ; Finches/*genetics/physiology ; Gene Duplication ; Gene Regulatory Networks/genetics ; Genome/*genetics ; Male ; MicroRNAs/genetics ; Models, Animal ; Multigene Family/genetics ; Retroelements/genetics ; Sex Chromosomes/genetics ; Terminal Repeat Sequences/genetics ; Transcription, Genetic/genetics ; Vocalization, Animal/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...