ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (2)
  • 16S gene copy number per unit sediment mass; Alkalinity, total; Ammonia; Aragonite saturation state; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; Core; Entire community; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Nitrate; Nitrite; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Phosphate; Salinity; Silicate; Silicate, flux; Soft-bottom community; Temperate; Temperature, water; Time in weeks; Treatment: pH; Type; Western_English_Channel  (1)
  • Alkalinity, total; Animalia; Aragonite saturation state; Area; Benthic animals; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Diameter; Echinodermata; Experiment; Field observation; Force; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Hardness; Height; Identification; Laboratory experiment; Length; Mesocosm or benthocosm; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Paracentrotus lividus; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Proportion; Replicate; Salinity; Second moment of area; Single species; Species; Temperate; Temperature; Temperature, water; Test set; Thickness; Treatment; Young's modulus  (1)
Collection
  • Data  (2)
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Collard, Marie; Rastrick, S P S; Calosi, Piero; Demolder, Yoann; Dille, Jean; Findlay, Helen S; Hall-Spencer, Jason M; Milazzo, Marco; Moulin, Laure; Widdicombe, Steve; Dehairs, Frank; Dubois, Philippe (2015): The impact of ocean acidification and warming on the skeletal mechanical properties of the sea urchin Paracentrotus lividus from laboratory and field observations. ICES Journal of Marine Science, https://doi.org/10.1093/icesjms/fsv018
    Publication Date: 2024-03-15
    Description: Increased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechinoid sea urchin Paracentrotus lividus. To assess skeletal mechanical properties, we characterized the fracture force, Young's modulus, second moment of area, material nanohardness, and specific Young's modulus of sea urchin test plates. None of these parameters were significantly affected by low pH and/or increased temperature in the laboratory experiment and by low pH only in the individuals chronically exposed to lowered pH from the CO2 seeps. In tidal pools, the fracture force was higher and the Young's modulus lower in ambital plates of individuals from the rock pool characterized by the largest pH variations but also a dominance of calcifying algae, which might explain some of the variation. Thus, decreases of pH to levels expected for 2100 did not directly alter the mechanical properties of the test of P. lividus. Since the maintenance of test integrity is a question of survival for sea urchins and since weakened tests would increase the sea urchins' risk of predation, our findings indicate that the decreasing seawater pH and increasing seawater temperature expected for the end of the century should not represent an immediate threat to sea urchins vulnerability
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Area; Benthic animals; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Diameter; Echinodermata; Experiment; Field observation; Force; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Hardness; Height; Identification; Laboratory experiment; Length; Mesocosm or benthocosm; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Paracentrotus lividus; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Proportion; Replicate; Salinity; Second moment of area; Single species; Species; Temperate; Temperature; Temperature, water; Test set; Thickness; Treatment; Young's modulus
    Type: Dataset
    Format: text/tab-separated-values, 15451 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: The geological storage of carbon dioxide (CO2) is expected to be an important component of future global carbon emission mitigation, but there is a need to understand the impacts of a CO2 leak on the marine environment and to develop monitoring protocols for leakage detection. In the present study, sediment cores were exposed to CO2-acidified seawater at one of five pH levels (8.0, 7.5, 7.0, 6.5 and 6.0) for 10 weeks. A bloom of Spirulina sp. and diatoms appeared on sediment surface exposed to pH 7.0 and 7.5 seawater. Quantitative PCR measurements of the abundance of 16S rRNA also indicated an increase to the abundance of microbial 16S rRNA within the pH 7.0 and 7.5 treatments after 10 weeks incubation. More detailed analysis of the microbial communities from the pH 7.0, 7.5 and 8.0 treatments confirmed an increase in the relative abundance of Spirulina sp. and Navicula sp. sequences, with changes to the relative abundance of major archaeal and bacterial groups also detected within the pH 7.0 treatment. A decreased flux of silicate from the sediment at this pH was also detected. Monitoring for blooms of microphytobenthos may prove useful as an indicator of CO2 leakage within coastal areas.
    Keywords: 16S gene copy number per unit sediment mass; Alkalinity, total; Ammonia; Aragonite saturation state; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; Core; Entire community; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Nitrate; Nitrite; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Phosphate; Salinity; Silicate; Silicate, flux; Soft-bottom community; Temperate; Temperature, water; Time in weeks; Treatment: pH; Type; Western_English_Channel
    Type: Dataset
    Format: text/tab-separated-values, 1400 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...