ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ocean Drilling Program; ODP  (3)
  • 154-927A; 154-927B; 154-927C; Calcium; Depth, composite; DEPTH, sediment/rock; DRILL; Drilling/drill rig; Iron; Iron/(Iron+Calcium) ratio; Joides Resolution; Leg154; Number; Ocean Drilling Program; ODP; Sample code/label; Section position; South Atlantic Ocean; X-ray fluorescence (XRF)  (1)
  • 208-1264; AGE; COMPCORE; Composite Core; Depth, composite revised; Joides Resolution; Leg208; Ocean Drilling Program; ODP; Walvis Ridge, Southeast Atlantic Ocean  (1)
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2024-01-09
    Keywords: 154-927A; 154-927B; 154-927C; Calcium; Depth, composite; DEPTH, sediment/rock; DRILL; Drilling/drill rig; Iron; Iron/(Iron+Calcium) ratio; Joides Resolution; Leg154; Number; Ocean Drilling Program; ODP; Sample code/label; Section position; South Atlantic Ocean; X-ray fluorescence (XRF)
    Type: Dataset
    Format: text/tab-separated-values, 2947 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hilgen, Frederik J; Kuiper, Klaudia F; Lourens, Lucas Joost (2010): Evaluation of the astronomical time scale for the Paleocene and earliest Eocene. Earth and Planetary Science Letters, 300(1-2), 139-151, https://doi.org/10.1016/j.epsl.2010.09.044
    Publication Date: 2024-01-09
    Description: The astronomical-tuned time scale is rapidly extended into the Paleogene but, due to the existence of an Eocene gap, different tuning options had to be presented for the Paleocene. These options differ both in number and tuning of ~405-kyr eccentricity related cycles and are only partially consistent with recalculated 40Ar/39Ar constraints for the Cretaceous/Paleogene (K/Pg) and Paleocene/Eocene (P/E) boundaries. In this paper, we evaluate the cyclostratigraphic interpretation of records from ODP Leg 198 and 208 sites, and the Zumaia section to solve the problem of the different tuning options. We found that the interval between the K/Pg boundary and the early Late Paleocene biotic event (ELPE) comprises 17 instead of 16 * ~405-kyr eccentricity related cycles as previously proposed, while the entire Paleocene contains 25 * ~405-kyr cycles. Starting from 40Ar/39Ar age constraints for the K/Pg boundary, a new tuning to 405-kyr eccentricity is presented for the Paleocene and earliest Eocene, which results in ages of ~66.0 and ~ 56.0 Ma for the K/Pg and P/E boundaries, respectively. This tuning introduces considerable differences in age for a number of nannofossil events at ODP Sites 1209 and 1262 in the interval between 61 and 63 Ma, but eliminates large and abrupt changes in the seafloor spreading rate. The tuning seems further consistent with recalculated 40Ar/39Ar ages for ash layer -17 of early Eocene age. However, despite this apparent consistency with existing radio-isotopic constraints, an alternative 405-kyr younger or, less likely, older tuning cannot be excluded at this stage.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Liebrand, Diederik; Beddow, Helen M; Lourens, Lucas Joost; Pälike, Heiko; Raffi, Isabella; Bohaty, Steven M; Hilgen, Frederik J; Saes, Mischa JM; Wilson, Paul A; van Dijk, Arnold E; Hodell, David A; Kroon, Dick; Huck, Claire E; Batenburg, Sietske J (2016): Cyclostratigraphy and eccentricity tuning of the early Oligocene through early Miocene (30.1–17.1 Ma): Cibicides mundulus stable oxygen and carbon isotope records from Walvis Ridge Site 1264. Earth and Planetary Science Letters, 450, 392-405, https://doi.org/10.1016/j.epsl.2016.06.007
    Publication Date: 2024-04-25
    Description: Few astronomically calibrated high-resolution (〈=5 kyr) climate records exist that span the Oligocene?Miocene time interval. Notably, available proxy records show responses varying in amplitude at frequencies related to astronomical forcing, and the main pacemakers of global change on astronomical time-scales remain debated. Here we present newly generated X-ray fluorescence core scanning and benthic foraminiferal stable oxygen and carbon isotope records from Ocean Drilling Program Site 1264 (Walvis Ridge, southeastern Atlantic Ocean). Complemented by data from nearby Site 1265, the Site 1264 benthic stable isotope records span a continuous ~13-Myr interval of the Oligo-Miocene (30.1?17.1 Ma) at high resolution (~3.0 kyr). Spectral analyses in the stratigraphic depth domain indicate that the largest amplitude variability of all proxy records is associated with periods of ~3.4 m and ~0.9 m, which correspond to 405- and ~110-kyr eccentricity, using a magnetobiostratigraphic age model. Maxima in CaCO3 content, d18O and d13C are interpreted to coincide with ~110 kyr eccentricity minima. The strong expression of these cycles in combination with the weakness of the precession- and obliquity-related signals allow construction of an astronomical age model that is solely based on tuning the CaCO3 content to the nominal (La2011_ecc3L) eccentricity solution. Very long-period eccentricity maxima (~2.4-Myr) are marked by recurrent episodes of high-amplitude ~110-kyr d18O cycles at Walvis Ridge, indicating greater sensitivity of the climate/cryosphere system to short eccentricity modulation of climatic precession. In contrast, the responses of the global (high-latitude) climate system, cryosphere, and carbon cycle to the 405-kyr cycle, as expressed in benthic d18O and especially d13C signals, are more pronounced during ~2.4-Myr minima. The relationship between the recurrent episodes of high-amplitude ~110-kyr d18O cycles and the ~1.2-Myr amplitude modulation of obliquity is not consistent through the Oligo-Miocene. Identification of these recurrent episodes at Walvis Ridge, and their pacing by the ~2.4-Myr eccentricity cycle, revises the current understanding of the main climate events of the Oligo-Miocene.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 18 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-25
    Keywords: 208-1264; AGE; COMPCORE; Composite Core; Depth, composite revised; Joides Resolution; Leg208; Ocean Drilling Program; ODP; Walvis Ridge, Southeast Atlantic Ocean
    Type: Dataset
    Format: text/tab-separated-values, 115 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Liebrand, Diederik; Raffi, Isabella; Fraguas, Ángela; Laxenaire, Rémi; Bosmans, Joyce H C; Hilgen, Frederik J; Wilson, Paul A; Batenburg, Sietske J; Beddow, Helen M; Bohaty, Steven M; Bown, Paul R; Crocker, Anya J; Huck, Claire E; Lourens, Lucas Joost; Sabia, Luciana (2018): Orbitally Forced Hyperstratification of the Oligocene South Atlantic Ocean. Paleoceanography and Paleoclimatology, 33(5), 511-529, https://doi.org/10.1002/2017PA003222
    Publication Date: 2024-04-25
    Description: Pelagic sediments from the subtropical South Atlantic Ocean contain geographically extensive Oligocene ooze and chalk layers that consist almost entirely of the calcareous nannofossil Braarudosphaera. Poor recovery and the lack of precise dating of these horizons in previous studies has limited our understanding of the exact number of acmes, their timing and durations, and the causes of their recurrence. Here we present a high-resolution, astronomically tuned stratigraphy of Braarudosphaera oozes (29.5-27.9 Ma) from Ocean Drilling Program Site 1264 in the subtropical southeastern Atlantic Ocean. We identify seven acme events in the Braarudosphaera abundance record. The longest lasting acme event corresponds to a strong minimum in the ~2.4-My eccentricity cycle, and four acme events coincide with ~110-ky and 405-ky eccentricity maxima. We propose that eccentricity-modulated precession forcing of the freshwater budget of the South Atlantic Ocean resulted in the episodic formation of a shallow pycnocline and hyperstratification of the upper water column. We speculate that stratified surface water conditions may have served as a virtual sea floor, which facilitated the widespread Braarudosphaera acmes. This explanation reconciles the contrasting distribution patterns of Braarudosphaera in the modern ocean, limited largely to shallow water coastal settings, compared to their relatively brief and expanded oceanic distribution in the past.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...