ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 39 (1993), S. 389-410 
    ISSN: 1573-4889
    Keywords: cyclic oxidation ; 12Cr-1Mo steel ; acoustic emission ; oxide-scale failure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Soot-blower operation leads to thermal-cyclic-oxidation conditions of heat-resistant steels in conventional power stations. The consequence may be failure of the protective oxide scales and increased corrosive attack. The behavior of protective oxide scales on 12Cr-1Mo steel was investigated under isothermal conditions at 650°C and under thermal cycling conditions between 650 and 300°C (200°C). The tests were performed in air, air + 0.5%SO2, simulating the fire side, and Ar-5% H2-50% H2O, simulating the steam side. Complete heat-exchanger tubes were used as specimens. The main instrument for the detection of scale failure was acoustic-emission analysis. In air and air + 0.5% SO2 the M2O3 scales with M = Fe, Cr were very thin and did not show significant failure either during isothermal or during cyclic oxidation. The thicker scales formed in Ar-5% H2-50% H2O, consisting of several partial layers, failed even during isothermal oxidation due to geometrically-induced growth stresses in the scale. Thus, in the thermal-cycling cooling periods there was only very little additional scale cracking. The scale behavior can be explained consistently by applying the existing quantitative models.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...