ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05.01. Computational geophysics  (2)
  • 1
    Publication Date: 2021-03-08
    Description: The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-eastern Atlantic, the Mediterranean, and connected seas (NEAM). NEAMTHM18 was designed as a three-phase project. The first two phases were dedicated to the model development and hazard calculations, following a formalized decision-making process based on a multiple-expert protocol. The third phase was dedicated to documentation and dissemination. The hazard assessment workflow was structured in Steps and Levels. There are four Steps: Step-1) probabilistic earthquake model; Step-2) tsunami generation and modeling in deep water; Step-3) shoaling and inundation; Step-4) hazard aggregation and uncertainty quantification. Each Step includes a different number of Levels. Level-0 always describes the input data; the other Levels describe the intermediate results needed to proceed from one Step to another. Alternative datasets and models were considered in the implementation. The epistemic hazard uncertainty was quantified through an ensemble modeling technique accounting for alternative models’ weights and yielding a distribution of hazard curves represented by the mean and various percentiles. Hazard curves were calculated at 2,343 Points of Interest (POI) distributed at an average spacing of ∼20 km. Precalculated probability maps for five maximum inundation heights (MIH) and hazard intensity maps for five average return periods (ARP) were produced from hazard curves. In the entire NEAM Region, MIHs of several meters are rare but not impossible. Considering a 2% probability of exceedance in 50 years (ARP≈2,475 years), the POIs with MIH 〉5 m are fewer than 1% and are all in the Mediterranean on Libya, Egypt, Cyprus, and Greece coasts. In the North-East Atlantic, POIs with MIH 〉3 m are on the coasts of Mauritania and Gulf of Cadiz. Overall, 30% of the POIs have MIH 〉1 m. NEAMTHM18 results and documentation are available through the TSUMAPS-NEAM project website (http://www.tsumaps-neam.eu/), featuring an interactive web mapper. Although the NEAMTHM18 cannot substitute in-depth analyses at local scales, it represents the first action to start local and more detailed hazard and risk assessments and contributes to designing evacuation maps for tsunami early warning.
    Description: The NEAMTHM18 was prepared in the framework of the European Project TSUMAPS-NEAM (http://www.tsumaps-neam.eu/) funded by the mechanism of the European Civil Protection and Humanitarian Aid Operations with grant no. ECHO/SUB/2015/718568/PREV26 (https://ec.europa.eu/echo/funding-evaluations/financing-civil-protection-europe/selected-projects/probabilistic-tsunami-hazard_en). The work by INGV authors also benefitted from funding by the INGV-DPC Agreement 2012-2021 (Annex B2).
    Description: Published
    Description: 616594
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Description: 2SR TERREMOTI - Gestione delle emergenze sismiche e da maremoto
    Description: 3SR TERREMOTI - Attività dei Centri
    Description: 5SR TERREMOTI - Convenzioni derivanti dall'Accordo Quadro decennale INGV-DPC
    Description: 3IT. Calcolo scientifico
    Description: 4IT. Banche dati
    Description: JCR Journal
    Keywords: probabilistic tsunami hazard assessment ; earthquake-generated tsunami ; hazard uncertainty analysis ; ensemble modeling ; maximum inundation height ; NEAM ; 05.08. Risk ; 03.02. Hydrology ; 04.06. Seismology ; 04.07. Tectonophysics ; 05.01. Computational geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-16
    Description: This article has been accepted for publication in Geophysical Journal Internationa ©: 2016 Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
    Description: We propose a procedure for uncertainty quantification in Probabilistic Tsunami Hazard Analysis (PTHA), with a special emphasis on the uncertainty related to statistical modelling of the earthquake source in Seismic PTHA (SPTHA), and on the separate treatment of subduction and crustal earthquakes (treated as background seismicity). An event tree approach and ensemble modelling are used in spite of more classical approaches, such as the hazard integral and the logic tree. This procedure consists of four steps: (1) exploration of aleatory uncertainty through an event tree, with alternative implementations for exploring epistemic uncertainty; (2) numerical computation of tsunami generation and propagation up to a given offshore isobath; (3) (optional) site-specific quantification of inundation; (4) simultaneous quantification of aleatory and epistemic uncertainty through ensemble modelling. The proposed procedure is general and independent of the kind of tsunami source considered; however, we implement step 1, the event tree, specifically for SPTHA, focusing on seismic source uncertainty. To exemplify the procedure, we develop a case study considering seismic sources in the Ionian Sea (central-eastern Mediterranean Sea), using the coasts of Southern Italy as a target zone. The results show that an efficient and complete quantification of all the uncertainties is feasible even when treating a large number of potential sources and a large set of alternative model formulations. We also find that (i) treating separately subduction and background (crustal) earthquakes allows for optimal use of available information and for avoiding significant biases; (ii) both subduction interface and crustal faults contribute to the SPTHA, with different proportions that depend on source-target position and tsunami intensity; (iii) the proposed framework allows sensitivity and deaggregation analyses, demonstrating the applicability of the method for operational assessments.
    Description: Italian Flagship Project RITMARE, EC FP7 ASTARTE (Grant agreement 603839) and STREST(Grant agreement 603389) projects, Italian FIRB-‘Futuro in Ricerca’ project ‘ByMuR’ (Ref. RBFR0880SR), INGV-DPC Agreement, Annex B2
    Description: Published
    Description: 1780–1803
    Description: 5T. Modelli di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: Probabilistic forecasting ; Tsunamis ; Earthquake interaction ; Europe ; 04.07. Tectonophysics ; 05.06. Methods ; 05.08. Risk ; 05.01. Computational geophysics ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...