ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astronomy  (2)
  • 04. Solid Earth::04.08. Volcanology::04.08.01. Gases  (1)
  • 1
    Publication Date: 2017-04-04
    Description: Here we report results from a multidisciplinary field campaign at Villarrica volcano, Chile, in March 2009. A range of direct sampling and remote sensing techniqueswas employed to assess gas and aerosol emissions from the volcano, and extend the time series of measurements that have been made during recent years. Airborne traverses beneath the plume with an ultraviolet spectrometer yielded an average SO2 flux of 3.7 kg s−1. This value is similar to previous measurements made at Villarrica during periods of quiescent activity. The composition of the plume was measured at the crater rim using electrochemical sensors and, for the first time, open-path Fourier transforminfrared spectroscopy, yielding a composition of 90.5 mol% H2O, 5.7% CO2, 2.6%SO2, 0.9% HCl, 0.3% HF and b0.01% H2S. Comparison with previous gas measurements made between 2000 and 2004 shows a correlation between increased SO2/HCl ratios and periods of increased activity. Base-treated filter packs were also employed during our campaign, yielding molar ratios of HBr/SO2=1.1×10−4, HI/SO2=1.4×10−5 and HNO3/SO2=1.1×10−3 in the gas phase. Our data represent the most comprehensive gas inventory at Villarrica to date, and the first evaluation of HBr and HI emissions from a South American volcano. Sun photometry of the plume showed the near-source aerosol size distributions were bimodal with maxima at b0.1 and ~1 μm. These findings are consistent with results from analyses in 2003. Electron microscope analysis of particulatematter collected on filters showed an abundance of sphericalmicron-sized particles that are rich in Si, Mg and Al. Non-spherical, S-rich particles were also observed.
    Description: Antofagasta plc via the University of Cambridge Centre for Latin American Studies, NERC Field Spectroscopy Facility, NERC projectNE/F004222/1, “Volgaspec” projectANR-06-CATT-012-01 and from the NOVAC project. Istituto Nazionale di Geofisica e Vulcanologia and Dipartimento di Protezione Civile-Regione Sicilia. Christ's College, University of Cambridge, NERC IKIMP project, (NE/G001219/1) and NERC grantNE/G01700X/1 for financial support. NERC National Centre for EarthObservation (“Dynamic Earth and geohazards”)
    Description: Published
    Description: 62-75
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Villarrica ; FTIR ; SO2 flux ; DOAS ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: To test the idea that ultraluminous X-ray sources (ULXs) in external galaxies represent a class of accreting Intermediate-Mass Black Holes (IMBHs), we have undertaken a program to identify ULXs and a lower luminosity X-ray comparison sample with the highest quality data in the Chandra archive. We establish a general property of ULXs that the most X-ray luminous objects possess the fattest X-ray spectra (in the Chandra band pass). No prior sample studies have established the general hardening of ULX spectra with luminosity. This hardening occurs at the highest luminosities (absorbed luminosity 〉 or equals 5x10(exp 39) ergs/s) and is in line with recent models arguing that ULXs are actually stellar-mass black holes. From spectral modeling, we show that the evidence originally taken to mean that ULXs are IMBHs - i.e., the "simple IMBH model" - is nowhere near as compelling when a large sample of ULXs is looked at properly. During the last couple of years, XMM-Newton spectroscopy of ULXs has to some large extent begun to negate the simple IMBH model based on fewer objects. We confirm and expand these results, which validates the XMM-Newton work in a broader sense with independent X-ray data. We find (1) that cool disk components are present with roughly equal probability and total flux fraction for any given ULX, regardless of luminosity, and (2) that cool disk components extend below the standard ULX luminosity cutoff of 10(exp 39) ergs/s, down to our sample limit of 10(exp 38:3) ergs/s. The fact that cool disk components are not correlated with luminosity damages the argument that cool disks indicate IMBHs in ULXs, for which a strong statistical support was never made.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-26
    Description: We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST) infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX 5 * 10(exp 39) erg s(exp -1)) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 * 10(exp 38) erg s(exp -1). This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.
    Keywords: Astronomy
    Type: AD-A564518 , The Astrophysical Journal; 734; 1; 33
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...