ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • seismotectonics  (5)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous  (3)
  • Earthquake catalog
  • TF III
  • ddc:550
Collection
  • 1
    facet.materialart.
    Unknown
    In:  J. Geophys. Res., Edmonton, Conseil de l'Europe, vol. 104, no. B11, pp. 25,595-25,610, pp. B10404, (ISSN: 1340-4202)
    Publication Date: 1999
    Keywords: Stress ; Fault plane solution, focal mechanism ; Borehole breakouts ; 8164 ; Tectonophysics ; Stresses--crust ; and ; lithosphere ; 7230 ; Seismology ; Seismicity ; and ; seismotectonics ; 1744 ; History ; of ; geophysics ; JGR ; Tectonophysics ; 9335 ; Information ; related ; to ; geographic ; region ; Europe
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Phys. Earth Plan. Int., Stockholm, Wissenschaftliche Buchgesellschaft, vol. 130, no. 1-2, pp. 71-101, pp. L15318, (ISSN: 1340-4202)
    Publication Date: 2002
    Keywords: Earthquake catalog ; Moment tensor ; Fault plane solution, focal mechanism ; PEPI ; Ekstroem ; Ekstrom ; Dziewonski
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006
    Keywords: TF III ; Task Force III ; Lithosphere-Astenosphere Interactions
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006
    Keywords: TF III ; Task Force III ; Lithosphere-Astenosphere Interactions
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006
    Keywords: TF III ; Task Force III ; Lithosphere-Astenosphere Interactions
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-04-20
    Description: The project Retreating-trench, extension, and accretion tectonics, RETREAT, is a multidisciplinary study of the Northern Apennines (earth.geology.yale.edu/RETREAT/), funded by the United States National Science Foundation (NSF) in collaboration with the Italian Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Grant Agency of the Czech Academy of Sciences (GAAV). The main goal of RETREAT is to develop a self-consistent dynamic model of syn-convergent extension, using the Northern Apennines as a natural laboratory. In the context of this project a passive seismological experiment was deployed in the fall of 2003 for a period of three years. RETREAT seismologists aim to develop a comprehensive understanding of the deep structure beneath the Northern Apennines, with particular attention on inferring likely patterns of mantle flow. Specific objectives of the project are the crustal and lithospheric thicknesses, the location and geometry of the Adriatic slab, and the distribution of seismic anisotropy laterally and vertically in the lithosphere and asthenosphere. The project is collecting teleseismic and regional earthquake data for 3 years. This contribution describes the RETREAT seismic deployment and reports on key results from the first year of the deployment. We confirm some prior findings regarding the seismic structure of Central Italy, but our observations also highlight the complexity of the Northern Apennines subduction system.
    Description: JCR Journal
    Description: open
    Keywords: temporary seismological network ; subduction geometry ; upper mantle fabric ; seismic anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 4184318 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The Tyrrhenian Sea is an extensional basin opened by trench retreat and back-arc extension during subduction of the Calabrian slab in the last 10–12 My. Subduction is still active beneath the SEmost part of the Tyrrhenian Sea, as testified by seismicity down to 500 km depth. By analyzing seismicity and geodetic data, together with recent tomographic images, we define the present-day situation. An evident N-S compressional regime prevails in the Tyrrhenian region west of the Aeolian archipelago, while east of them a NNW-SSE extension is documented by focal mechanisms and GPS data, with a much smaller strain rate with respect to the past. The transition between these two domains is accommodated by a N-S discontinuity zone which runs from Aeolian Islands to Mt. Etna with an extensional to strike-slip deformation.
    Description: Published
    Description: L06611
    Description: JCR Journal
    Description: reserved
    Keywords: geodynamics ; seismotectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: On 2009 April 6, the Central Apennines were hit by an Mw = 6.3 earthquake. The region had been shaken since 2008 October by seismic activity that culminated in two foreshocks with Mw 〉 4, 1 week and a few hours before the main shock. We computed seismic moment tensors for 26 events with Mw between 3.9 and 6.3, using the Regional Centroid Moment Tensor (RCMT) scheme. Most of these source parameters have been computed within 1 hr after the earthquake and rapidly revised successively. The focal mechanisms are all extensional, with a variable and sometimes significant strike-slip component. This geometry agrees with the NE–SW extensional deformation of the Apennines, known from previous seismic and geodetic observations. Events group into three clusters. Those located in the southern area have larger centroid depths and a wider distribution of T-axis directions. These differences suggest that towards south a different fault systemwas activated with respect to the SW-dipping normal faults beneath L’Aquila and more to the north.
    Description: In press
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: open
    Keywords: moment tensor ; seismotectonics ; L'Aquila ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: We present an updated present-day stress data compilation for the Italian region and discuss it with respect to the geodynamic setting and the seismicity of the area. We collected and analyzed 190 new stress data from borehole breakouts, seismicity, and active faults and checked in detail the previous compilation [Montone et al., 1999]. Our improved data set consists of 542 data, 362 of which with a reliable quality for stress maps. The Italian region is well sampled, allowing the computation of constrained smoothed stress maps; for surrounding regions we added the World Stress Map 2003 release data. These maps depict the active stress conditions and, in the areas where the data are sparse, contribute to understand the relationship between active stress, past tectonic setting, and the seismicity of the study region. The new data are particularly representative along the northern Apennine front, from the Po Plain to offshore the Adriatic, and along the southern Tyrrhenian Sea, north of Sicily, where they point out a compressive tectonic regime. In the Alps both compressive and transcurrent regimes are observed. Our data also confirm that the whole Apenninic belt and the Calabrian arc are extending. Along the central Adriatic coast, changes from one stress regime to another are shown by abrupt variations in the minimum horizontal stress directions. Other gentler stress rotations, as, for instance, from the southern Apennines to the Calabrian arc or along the northern Apennines, follow the curvature of the arcs and are not associated to a stress regime variation.
    Description: Published
    Description: (B10410)
    Description: partially_open
    Keywords: active stress ; earthquakes ; borehole breakouts ; crust and lithosphere ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3452579 bytes
    Format: 711 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: We present shear-wave splitting results obtained from analysis of core refracted teleseismic phases recorded by permanent and temporary seismographic stations located in the Victoria Land region (Antarctica). We used eigenvalue technique to linearize the rotated and shifted shear-wave particle motion, in order to determine the best splitting parameters. A well-scattered distribution of single shear-wave measurements has been obtained. Average values show clearly that dominant fast axis direction is NE-SW oriented, accordingly with previous measurements obtained around this zone. Only two stations, OHG and STAR show different orientations, with N-S and NNW-SSE main directions. On the basis of the periodicity of single shear-wave splitting measurements with respect to back-azimuths of events under study, we inferred the presence of lateral and vertical changes in the deep anisotropy direction. To test this hypothesis we have modelling waveforms using a cross-convolution technique in one and two anisotropic layer's cases. We obtained a significant improvement on the misfit in the double layer case for the cited couple of stations. For stations where a multi-layer structure does not fit, we looked for evidences of lateral anisotropy changes at depth through Fresnel zone computation. As expected, we find that anisotropy beneath the Transantarctic Mountains (TAM) is considerably different from that beneath the Ross Sea. This feature influences the measurement distribution for the two permanent stations TNV and VNDA. Our results show a dominant NE-SW direction over the entire region, but other anisotropy directions are present and find an interpretation when examined in the context of regional tectonics.
    Description: Submitted
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: N/A or not JCR
    Description: open
    Keywords: Antarctica ; Seismic Anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...